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ABSTRACT 

The design of a device that controls the sequence and timing of deployment of CubeSats 

on the Naval Postgraduate School’s CubeSat Launcher (NPSCuL) is detailed in this 

thesis.  This design is intended to be implemented on a field-programmable gate array 

(FPGA) installed into the NPSCuL.  This configuration allows flexibility in 

reprogramming the launch sequence and adding additional functionality in future designs. 

Operating an FPGA on orbit presents unique challenges due to the radiation 

environment.  Radiation from space cannot be shielded efficiently, so devices must be 

tolerant of the expected effects.  The most common effect, the single-event upset can 

have detrimental effects on operating electronics, causing undesired changes to data.   

To combat this problem, fault tolerant techniques, such as triple-modular 

redundancy (TMR) are explored.  In these methods, multiple redundant copies of the 

design are operated simultaneously, and the outputs are voted on by special circuits to 

eliminate errors.  Comparisons between manual and software generated TMR methods 

are tested, and the design is implemented on test hardware for further verification.  

Finally, future research and testing is discussed to continue to ready the design for 

employment of the sequencer on an actual space mission. 
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EXECUTIVE SUMMARY 

The purpose of this research was to detail the design of a control system to deploy 

CubeSats from the Naval Postgraduate School CubeSat Launcher (NPSCuL).  This 

design was developed as a minimal design with no inherent redundancy and then 

expanded to redundant versions with various types of fault tolerance.  Comparisons in the 

operation between these versions as well as the required hardware resources to handle the 

additional components were performed. 

 
 

Figure 1 NPSCuL 3D model, showing eight P-PODs and the attached electronics 

enclosure. 

The NPSCuL is a cube-shaped structure, about 20 inches per side.  It is designed 

to be mounted on the aft end of an Atlas V Centaur launch vehicle.  It holds eight poly-

picosatellite orbital deployers (P-PODS), and each P-POD can hold up to three small 

cube satellites, each about four inches per side.  A three-dimensional (3D) model of the 

NPSCuL can be seen in Figure 1.  When the host spacecraft reaches the desired orbit, the 

P-POD doors are opened, and the picosatellites are deployed by a spring deployment 

mechanism.  The NPSCuL either controls the deployment sequence via an onboard 

control system, known as the sequencer, or the deployment is controlled by the launch 

vehicle’s flight computer.  The sequencer logic is programmed into a field programmable 
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gate array (FPGA).  This design choice allows a reduced cost over a custom application 

specific integrated circuit (ASIC) and allows for design flexibility as capabilities are 

changed or added in the future. 

The environment of space produces a complex and varied radiation environment.  

Objects in space are bombarded by high energy gamma rays, streams of protons, 

neutrons, and electrons.  Impacts from alpha particles and heavier elements are 

continuously occurring.  Any spacecraft must be able to handle these conditions in order 

to operate reliably.  While many materials are largely unaffected by these conditions, 

electronics can experience significant detrimental effects.  The energy generated by each 

impact in the silicon of the transistors are known as single-event effects (SEEs).  These 

effects can cause a transient pulse, called a single-event transient (SET), or even cause 

permanent damage to the device in the form of a burnout or gate rupture.  The SEE of 

most concern here is the single-event upset (SEU), where an SEE causes a bit flip in a 

register or memory location from a one to a zero or vice versa.  An SEU in an operating 

device such as a spacecraft control system can have disastrous results and lead to mission 

failure or even loss of the spacecraft. 

To protect against SEUs and other SEEs, the electronics manufacturing industry 

has developed two primary methods.  One involves designing their devices with different 

materials and methods that are more resistant to radiation effects.  This includes 

manufacturing techniques such as silicon on insulator or silicon on sapphire, where extra 

insulation material is incorporated into the semiconductor, increasing the energy 

threshold required to cause an SEU.  These design changes are effective but can be very 

costly.  The second protection method adds redundancy or error detection and correction 

methods to the designs themselves.  Using multiple devices or multiple segments of logic 

on the same device ensures that a single radiation event does not affect the entire system, 

and the remaining unaffected units can continue to operate correctly.  This redundancy 

can take the form of quadded logic, quadruple force decide redundancy (QFDR), triple 

interwoven redundancy (TIR), or the triple modular redundancy (TMR).  Other error 

correction and detection schemes such as error correcting codes (ECC) and reduced  
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precision redundancy (RPR) are also used in some devices.  Due to their reconfigurable 

nature, FPGAs are susceptible to SEEs in their normal operation as well as their 

configuration memory. 

The NPSCuL will be operating in this environment once launched, and its 

electronics must be able to handle these conditions.  Prior flights of the NPSCuL have 

used the launch vehicle to control deployments.  Future flights are expected to use the 

onboard sequencer.  The sequencer design presented here should meet the mission 

requirements, provide sufficient fault tolerance to operate reliably on orbit, and provide 

flexibility for future operations. 

To begin the design of the sequencer, the operational, mechanical, and electrical 

requirements for the system were obtained from the various design documents.  These 

include operating voltages, time delay requirements, interfaces, and mechanical 

clearances.  From these requirements, a functional flowchart was generated, and a finite 

state machine was developed.  The design was created with separate modules, which 

allows more flexibility for future design changes and improvements, as seen in Figure 2.  

Additional supporting hardware was also designed, specifically a radiation hardened 

launch command voter device, which serves as a final launch command decision to 

eliminate faults caused by an SEU in the FPGA outputs. 

 
 

Figure 2 Block diagram for the single-sequencer design. 

 

To properly test this sequencer design, it first had to be implemented in software.  

After a brief review of appropriate languages and development environments, the design 
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was created in Verilog, a hardware description language.  With its flexible and powerful 

simulation tools, the Xilinx Integrated Software Environment (ISE1) was chosen as the 

development environment.  Selecting the appropriate testing methods and techniques was 

critical to verify proper operation of the fault tolerant features of the sequencer.  A list of 

potential errors was developed that encompassed the most likely SEE errors that would 

be seen on orbit.  These included errors such as bit-flips, stuck-at-one or zero errors, and 

floating inputs and outputs. A small fault module was created and used to insert these 

various fault types into the design. An analysis of the most significant error locations was 

performed, and the fault modules were inserted into those locations. 

Fault performance testing was performed on the single sequencer design first with 

no included redundancy.  This establishes a baseline of performance and demonstrates 

the types of errors that are expected in a non-fault tolerant design.  Two separate fault-

tolerant design versions were then created. The first using a distributed TMR method 

done manually, as shown in Figure 3.  The second used the automatic TMR features of a 

software program by Synopsys called Synplify2.  These two versions were tested against 

the same fault sequence as the initial design version.  In every case, the manual TMR 

version was able to correct the faults before the output was affected, proving the 

effectiveness of the TMR concept.  The software designed version was effective with 

some errors, but not all.  The software-assisted TMR design was considerably quicker to 

create than the manual TMR design, taking only a few seconds to complete.  The final 

result was lacking in fault tolerance compared to the manual design, however, and 

consumed nearly the same degree of FPGA resources.  For simple designs, manual TMR 

has an advantage.  As complexity increases, the designer may need make a decision 

between the man-hour cost of development and the level of fault tolerance provided. 

 

                                                 
1 ISE® is a registered trademark of Xilinx 
2 Synplify® is a registered trademark of Synopsys, Inc. 
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Figure 3 Block diagram for manual distributed TMR sequencer design, showing 

triplicated logic and voter locations. 

 

Following this development, the software design was translated onto physical 

FPGA hardware.  An FPGA hardware prototyping and development board was selected, 

the Genesys3 board by Digilent.  This board provided a good mix of light emitting diodes 

(LEDs) for indications and on-board switches and pushbuttons to properly provide input 

to the system.  A comparison of the required hardware resources demonstrated that the 

TMR version does require significantly more resources than the single version.  While 

this is not a major factor in this example, it is a concern for anyone designing a more 

complex or resource intensive project.   

Testing demonstrated that the manual TMR version of this design is resistant to 

all the error conditions applied.  The software-assisted TMR design was good but still did 

not protect against some of the SEE-induced faults that the manual TMR did, despite the 

similar level of resources consumed.   

Further research is needed to determine the effect of an actual radiation field on 

the sequencer design, to compare other radiation tolerant logic methods, such as 
                                                 

3 Genesys® is a trademark of Digilent, Inc.  
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intelligent place-and-route, and to explore future capabilities and uses of the FPGA 

design on the NPSCuL. The goals of this project were met, with a successful design of a 

SEE-resistant sequencer suitable for operation on the NPSCuL. 
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I. INTRODUCTION 

A. PURPOSE 

The purpose of this research is to compare manual and automated means of 

creating reliable sequential logic designs using fault-tolerant methods.  While manual 

methods are proven, they can be very time consuming to develop and test.  Automated 

means via new commercial software packages are available and have the potential to 

generate significant cost and time savings.  The eventual goal of this research is to 

produce logic designs that can operate reliably in high radiation space environments 

using lower cost military or commercial aeronautical grade hardware rather than 

expensive radiation-hardened (rad-hard) devices.   

In order to achieve high reliability against the types of radiation-induced faults 

that are encountered in an operating environment, several different methods are typically 

employed.  A device that suffers permanent damage after a short time in a radiation 

environment is obviously unsuitable.  On the other extreme, radiation hardening of the 

hardware itself through design or shielding is cost and weight prohibitive in this 

application.  For any operation in space, some level of radiation resistance or tolerance is 

required.  Fault tolerance via logic design methods, such as triple modular redundancy 

(TMR) or quadded logic, are well-known methods but labor intensive.  Even for simple 

sequential machines, the overall complexity increases exponentially.  As a result, these 

methods are not frequently employed for anything but the simplest of logic designs.  New 

software packages, such as Precision1 Synthesis RTL Plus by Mentor Graphics, 

TMRTool2 by Xilinx and Synplify3 Premiere by Synopsys, enable a designer to apply 

these high-reliability techniques with software tools.  This makes much more complex 

designs, up to full reduced instruction set-type CPUs or system-on-a-chip (SoCs) devices, 

a possibility. 

                                                 
1 Precision® is a registered trademark of Mentor Graphics Corporation 
2 TMRTool® is a registered trademark of Xilinx, Inc. 
3 Synplify® is a registered trademark of Synopsys, Inc 
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While this research can be applied to any general sequential or combinational 

logic machine, the specific application is for a launch sequencer for the Naval 

Postgraduate School (NPS) CubeSat Launcher known as NPSCuL [1].  This platform is 

an excellent fit for this type of design due to the complexity of the design, the 

requirements for operation, and the association with NPS.  A primary driver of most 

CubeSat programs is lower costs and the use of commercial field programmable gate 

arrays (FPGAs) to achieve levels of reliability comparable to rad-hard devices would be 

highly desirable.  The same concepts apply to the launch platform for the CubeSats, 

where a launch sequencer must be highly reliable, reconfigurable, and low cost.  Current 

commercial products that meet the design goals are far too costly to be realistically 

considered. 

NPSCuL offers an excellent platform to begin to expand these concepts to 

physical hardware in a real operating environment.  The sequencer has a limited number 

of inputs and outputs and must simply execute a timed launch sequence for the installed 

CubeSats when initially powered on.  The actual sequence and timing for each launch is 

programmable on the ground prior to launch.  No outside commands into the system are 

provided; the sequence starts automatically when the system is powered.  The outputs are 

the individual P-POD launch commands and status reports for each launch.  This design 

is developed to easily integrate with the existing hardware and requirements developed in 

previous work on this launcher.  In particular, the design created in this thesis must work 

with the FPGA and printed circuit board (PCB) designs that have already been developed 

for the NPSCuL [2]. 

B. PREVIOUS WORK 

The NPSCuL sequencer and supporting hardware, software and components have 

been developed by a number of students over the course of the program’s history.  Each 

person’s work has been useful to develop the concepts and technology to allow the 

program to reach its current status.  The key portions of this work relevant to this thesis 

are listed here. 
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1. NPS Configurable Fault-Tolerant Processor Project 

The Configurable Fault-Tolerant Processor (CFTP) project [3], [4], [5], [6] was a 

cornerstone of the research by NPS on radiation effects on FPGAs.  This project was 

worked on by multiple students and staff over several years of research.  The project 

mainly focused on considerably more complex logic designs, up to and including 

complete general processor units.  The individuals working on these projects developed 

an excellent knowledge base of information for implementing fault-tolerant designs in 

hardware and were able to perform some testing in an actual radiation field.  Since much 

of the CFTP data was obtained using older generation FPGA hardware, the results with 

newer generation hardware can be expected to change.  In addition, the reduced 

complexity of the sequencer design and the robustness of NPSCuL interfaces should lead 

to fewer expected faults. 

2. Parobek’s Hardware 

Lieutenant (LT) Luke Parobek developed a test board known as the “ProASIC3 

Test Board” [2] for testing of a proposed sequencer implementation.  This small PCB 

incorporated a commercial FPGA from Actel and serves as a test bed and a preliminary 

prototype for future development of a flight-ready sequencer.  In addition, the details for 

the interface of this sequencer with existing NPSCuL electronics was developed to allow 

future integration.  This hardware is robust and flexible and is essential for initial 

verification and testing of various logic designs. 

 
Figure 1.  ProASIC3 test board (from [2]) 
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3. Majewicz’s TMR Research 

LT Peter Majewicz performed significant research into the implementation 

of TMR logic designs [7].  While his work involved significantly more complex designs 

than this thesis, the overall concepts are still very relevant for this work.  In particular, he 

was able to perform actual radiation testing at the University of California-Davis’ 

cyclotron.   This data can be used to estimate performance of future logic designs that use 

his methods. 

C. NPSCUL AND SEQUENCER HISTORY 

1. NPS Cube Sat Launcher 

A CubeSat is a class of satellite known as a nanosatellite, with a mass between 

one and 10 kilograms.  These small satellites are currently used for space research by 

academic and commercial groups [8].  The smallest of these devices is a “1U” size, 

which is defined as a cube 10 cm on each side [9].  A 2U or 3U size shares the same base 

as a 1U size but either doubles or triples, respectively, in height. 

 
Figure 2.  Typical 1U CubeSat (from [8]) 
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NPSCuL is a CubeSat launcher, developed by NPS and funded by the National 

Reconnaissance Office (NRO), as shown in Figure 3.  This relatively small package is 

designed to fit within a small volume, mounted as a secondary payload.  The launcher 

consists of an aluminum framework and base and a minimal amount of supporting 

electronics.  The framework supports eight poly-picosatellite orbital deployers (P-PODS), 

each of which is capable of deploying up to three 1U CubeSats or combinations of 1U, 

2U or a single 3U CubeSat.  The base is compatible with an evolved expendable launch 

vehicle (EELV) secondary payload adapter (ESPA), which allows mounting to a variety 

of primary payloads for delivery to orbit.  The electrical interface with the host is limited 

to some number of power and data signals.  In one possible configuration, the launch 

vehicle provides all the required electrical power and door switch data lines.  In this case, 

the host controls the launch sequence and timing for each P-POD and each P-POD’s door 

status is directly available back to the launch vehicle.  In another possible configuration, 

only primary and secondary power and a single data line are provided by the host.  In this 

configuration, the sequencer is necessary to launch the P-PODs and monitor the status of 

each P-POD door position [1]. 

 
Figure 3.  NPSCuL 3D model, showing P-PODs mounted inside frame and attached 

sequencer and control electronics enclosure (from [10]) 
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2. NPSCuL Sequencer 

The sequencer has several unique requirements that led to the selection of an 

FPGA based control system.  In particular, the design must be programmable and 

reconfigurable for future missions and requirements.  The P-POD launch order and 

timing between each launch can be changed at any time prior to launch while physical 

access to the NPSCuL is still possible.  The sequencer must also fit within the existing 

physical volume of the NPSCuL electronics structure, as depicted by the yellow box in 

Figure 3, as well as interface electrically with the current hardware without major 

modifications.  The operation of the launcher when under the control of the sequencer 

must be identical to operation under the control of the primary spacecraft.  The sequencer 

will be exposed to the same radiation environment as the primary spacecraft, and must 

operate without radiation induced errors under these conditions.  The ability to 

reconfigure the control system via an FPGA design is the key factor in this system due to 

the flexibility that it provides to the engineers to meet changing requirements and 

implement new features and capabilities without necessarily requiring an extensive 

redesign or expensive testing of the hardware. 

D. THESIS ORGANIZATION 

This thesis is divided into six chapters.  The first chapter presented the purpose of 

this work, previous related work completed here at NPS, and the history of the NPSCuL 

and the associated sequencer.  In the second chapter, background information on the 

radiation environment encountered by spacecraft on orbit is discussed.  A basic overview 

of the effects of radiation on semiconductor electronics is also explained, as well as the 

efforts by engineers to mitigate those effects through new hardware designs, and finishes 

with a brief review of the most common types of logical fault tolerance.  The third 

chapter begins with an explanation of the NPSCuL sequencer’s operational requirements 

and design decisions and then proceeds to detail the process used to generate a design 

from those requirements.  The concept, methods, and results of testing for the sequencer 

design are contained in Chapter IV.  The basic sequencer’s functionality is verified and 

compared to that of the chosen fault tolerant methods in this chapter.  Translating these 
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designs into a physical form on hardware devices is detailed in Chapter V, and a 

comparison of the required resources for each design is made.  Final conclusions and 

recommendations for future work and continued development can be found in Chapter 

VI.  The final pages contain the appendices, which contain the source code and relevant 

schematics generated during the course of this research. 
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II. FAULT TOLERANCE 

The nature of space flight puts very strict requirements on any spacecraft and its 

associated components.  After these systems are built and tested, they must survive harsh 

launch conditions and the transition to vacuum and space.  Then they must power on 

independently, establish control of themselves and establish communications with the 

ground.  Once on-orbit, the hardware systems must operate reliably for their mission life, 

usually with no possibility of repairs or maintenance.  Few other highly complex systems 

must meet these requirements.  The occurrence of electronic faults and how those faults 

are handled is, therefore, a very important area of discussion within the space community. 

Electronic devices operating in space are subject to an extremely harsh operating 

environment.  Space qualified components typically operate in a vacuum,  experience 

extreme temperature variations while operating, undergo heavy vibration and shock 

during launch, and function in widely varying radiation conditions.  Most consumer 

electronics cannot survive these conditions.  Even more expensive industrial and 

aerospace-specific parts may not be able to function in these conditions.  In response to 

the challenges, electronics manufactures have developed very specific parts.  While these 

parts are often engineering marvels, they come with a very high price tag.  In particular, 

the radiation hardened devices command a premium price, orders of magnitude greater 

than commercial-off-the-shelf (COTS) aerospace devices.  Temperature, atmospherics, 

and vibration are a concern for almost all industrial electronics; however, the impact and 

effects from a radiation environment is fairly unique to spacecraft and submarines and 

serves as the focus of this thesis. 

A. RADIATION ENVIRONMENT AND EFFECTS 

1. Radiation Environment on Orbit 

The sun produces radiation at all energy levels.  A fairly constant source is 

emitted by the solar wind.  The sun also produces random solar flares and coronal mass 

ejections (CMEs), which can produce shorter term but much higher intensity bursts of 

energy.  The complex magnetic fields of the Earth can be seen along with some typical 
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satellite orbits in Figure 4.  These fields trap, concentrate and accelerate radiation 

particles and are still not well understood by NASA.  Some radiation particles even arrive 

from other stars in deep space.  These particles can be categorized into several types and 

energy levels. 

 
Figure 4.  The Van Allen radiation belts around the Earth are being studied and 

characterized by NASA (from [11]) 

High energy electrons are usually generated by the magnetic fields of the Earth’s 

Van Allen belts.  These belts of magnetic force accelerate lower energy electrons to much 

higher energy states.  Electrons are also found in the solar wind, solar flares, and CME 

material.  Similar to electrons, protons are produced by the same sources.  Due to their 

higher mass, they can produce more damaging effects for the same particle velocity. 

Heavy elements, primarily produced by solar flare events, can do a great deal of 

damage to electronics and generate second and third order events due to their high 

velocity, high electrostatic charge, and their high mass.  The mass of individual particles, 
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the energy, and the concentration can vary wildly in a short time.  Radiation from sources 

outside our solar system, known as cosmic radiation, is also a significant source of heavy 

ions.  This name can be a misnomer, as it does cover nearly any radiation heavier than an 

alpha particle and not just heavy metals. 

Gamma rays, neutrons, and other particles of varying energy and density also 

exist in the space environment and must be considered.  Even the structural materials of 

the spacecraft can become irradiated over time and emit radiation.  A comparison of the 

relative strength of the incident particles and energy can be seen in Table 1.   

Table 1.   Comparison of mass and charge between radiation particles encountered on 
orbit. 

Particle Type Mass (in amu) Charge (in e) 
Electrons 5.48x10-4 -1 
Protons 1 1 
Neutrons 1 0 
Alpha 4 +2 
Heavy Element Typically >4 Typically >+2 
Gamma Ray 0 0 

 

While operating on earth, the majority of this radiation is blocked by the Earth’s 

magnetic field and atmosphere.  Once any spacecraft is launched, however, it loses the 

shielding of the atmosphere and must deal with these new surroundings.  The structure of 

a spacecraft and the protective covers of the equipment boxes provide shielding from the 

majority of the low-energy radiation electronic components encounter.  Higher energy 

gamma rays and particles still penetrate these materials, and significant levels of 

shielding are impractical for spaceflight due to the mass constraints for launch.  Even 

with modern field-programmable gate array (FPGA) and application specific integrated 

circuit (ASIC) devices, the very compounds that form their packing contain trace 

amounts of radioactive elements and can emit alpha particles as they decay.  Since the 

radiation environment is impossible to avoid, the sensitive electronic components must be 

designed to handle these conditions. 
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2. Radiation Interactions with Electronic Materials 

To determine the effects radiation has on a specific electronic component, it is 

necessary to first define some terms and concepts.  The term “fluence” is defined as the 

number of particles passing through a given area and is expressed in particles/cm2.  

When fluence is measured over a given time, the term is given as flux and is expressed in 

particles/cm2-sec.  To determine the total radiation that a material has absorbed, the unit 

of rad (radiation absorbed dose) is used, and it is defined as 100 ergs per gram of energy 

absorbed by the given material.  The amount of energy that is actually absorbed is 

dependent on the type of radiation as well as the material in question, so it is frequently 

annotated as such. For silicon, it is noted as rad(Si) 

The effects of radiation on any complex electronic devices can be divided into 

two potential categories, regardless of radiation source.  One category is ionizing effects, 

which primarily occur from photon radiation, and the second is displacement effects, 

which usually occur from charged particle or neutron radiation.  With the uncertain 

nature of nuclear and radiological interactions, there is no way to guarantee or predict 

exactly when or how an interaction will occur.  It depends heavily on the material 

involved, the type and intensity of the radiation, and the energy levels.  Effects are, 

therefore, generally described with a probability of occurring in a given situation. 

 
Figure 5.  Effects of an ionization event on a transistor inside a typical FPGA (from 

[12]) 
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Ionization effects on materials can be broken down into three possible effects, 

Compton scattering (CS), pair production (PP), and the photoelectric effect (PE).  The 

photoelectric effect occurs when a high energy radiation photon is absorbed by an 

incident atom in the material, the atom responds by emitting an electron in a random 

direction and the nucleus recoils with an equivalent momentum.  This electron can go on 

to cause other interactions.  This primarily occurs with lower-energy photons.  As photon 

energy increases the Compton scattering effect is more likely, where the incident photon 

transfers some of it energy to motion of the target electron, the photon is then re-emitted 

at a lower energy and can go on to cause other interactions.  At the highest levels of 

incident photon energy (>1.02 MeV), pair production reaction can occur.  In this situation 

the incident photon interacts with a heavier nucleus and produces an electron and 

positron with equal but opposite momentum.  These two particles then usually go on to 

produce secondary interactions.  These effects are probabilistic; a very high energy 

photon may cause any one of the three effects.  A photon must have a certain threshold 

energy to cause Compton scattering and must have a minimum of 1.02 MeV to cause pair 

production.  An example of these probabilities, comparing the atomic mass of the target 

nucleus to the incoming gamma energy, is shown in Figure 6.  

 
Figure 6.  Illustration of gamma ray interactions with various types of material.  Areas of 

dominant interaction types are indicated (from [13])  
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Total ionizing dose (TID) is a measure of the accumulated damage due to ionizing 

events, measured in rads, occurring within a device or component.  In metal oxide 

semiconductor (MOS) devices, this damage ordinarily takes the form of a buildup of 

trapped charge within the thin oxide layers of a device [14].  As an ionizing event occurs 

in the silicon oxide (SiO2) layer, it generates a trail of electron/hole pairs (EHPs).  The 

freed electrons are highly mobile and quickly, on the order of picoseconds, migrate away 

based on the existing electric fields in the area.  The holes left behind move in the 

opposite direction but migrate much more slowly by swapping electrons with nearby 

atoms.  This process causes an immediate shift in the threshold voltage of the device.  

Depending on device temperature, it can take seconds for equilibrium to be restored.  As 

they migrate through the material, some of these holes become trapped at the SiO2/Si 

interfaces, and this leads to a permanent voltage shift in the device.  The energy of the 

incident radiation affects the number of EHPs formed, and the electric field strength 

affects their ability to recombine, as shown in Figure 7.  The more EHPs that escape 

immediate recombination, the greater the overall damage to the device   

 
Figure 7.  Effects of the electric field strength and the incident radiation intensity on 

recombination of EHPs (from [15]) 
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Displacement effects are generally caused by two effects, either Rutherford 

scattering or direct nuclear interactions.  In the case of Rutherford scattering, an incoming 

charged particle undergoes an electrostatic interaction with the target atom.  This can lead 

to an ionization effect, or a displacement effect, where the target atom is physically 

moved from its location in the crystal lattice.  The primary means of energy exchange are 

via the electrostatic fields of the particles and not physical absorption.  If contact does 

occur, for example an inelastic collision between a neutron from the radiation field and a 

silicon nucleus in the electronic device, then a nuclear interaction has occurred.  This 

impact can also displace atom from their location in the crystal lattice, and this movement 

often causes secondary interactions.  Other nuclear events, such as a protons being 

absorbed by material nuclei and subsequently producing more alpha particles when they 

decay, are also considered displacement effects. 

Is it important to note that these events and their causes are closely intertwined, 

and the secondary effects produced can be significant.  A single interaction that generates 

a displacement event may produce several secondary displacement events before the 

energy is dissipated.  Each of those secondary events may produce other ionizing events.  

Similarly, a high-energy ionizing event may also cause secondary displacement effects or 

ionizing events.  In addition, if these effects occur in a semiconductor device with a 

current applied, the electric field generated can impact the path and final disposition of 

the resulting particles.  This last interaction and the permanent damage caused by 

displacement effects are what generate the undesired effects inside semiconductor 

devices. 

3. Radiation Effects on Electronic Component Operation 

Exactly how these various events affect the operation of the device itself depends 

largely on the construction of the device, exactly where on the device the event occurs, 

the energy released by the event, and the state of the device at the time of impact.  If the 

event produces a measureable effect, it can be considered a single event effect (SEE).  

Physically, these effects take the form of current or voltage spikes within the device.  Soft 

errors are seen as temporary transients that can be corrected by resetting or cycling the 
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power to the device.  Hard errors occur when the SEE causes permanent damage to some 

portion of the FPGA.  As we cannot readily measure the voltage or current at every point 

inside an operating FPGA, we can only classify these events as they relate to the 

operational logic of the device.  These operational errors can be tracked and further 

broken down based on the type of effect they have on the FPGA. 

 
Figure 8.  Types of non-recoverable single-event effects. (from [16]) 

The susceptibility of a device to hard errors is of significant importance in this 

discussion.  If the FPGA suffers permanent damage quickly in the operating environment, 

then it becomes useless in short order, regardless of any fault-tolerant logic designs.  The 

three major types of hard errors include the single-event latch-up (SEL), where a SEE 

causes a transistor within the device to become “stuck” in a particular state, the single-

event burnout (SEB), which applies mainly to power metal–oxide–semiconductor field-

effect transistors (MOSFETs) and results in a permanently forward-biased transistor, and 

the single-event gate rupture (SEGR), a rupture of the gate’s oxide insulation, which 

generally occurs only with high energy SEEs. 
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Figure 9.  Types of recoverable single-event effects (from [16]) 

Soft, or recoverable errors, are much more common than hard errors and are seen 

in almost all FPGA or ASICs.  These generally fall into one of two major categories: 

single-event transients (SETs) and single-event upsets (SEUs).  An SET occurs when an 

SEE causes a voltage or current transient in the FPGA.  If this occurs at the wrong time, 

for example on a clock edge where the logic is currently checking for a value, then an 

erroneous signal may be propagated into the logic function.  An SEU is more specific, 

and occurs when the SEE causes a “bit flip” in the FPGA.  A flip-flop, memory element 

or latch within the FPGA must be changed from zero to one or vice versa by the SEE to 

be classified as an SEU.  If multiple bits within the FPGA are impacted by the SEE, this 

is classified as a multi-bit upset (MBU). 

A third category, the single-event function interrupt (SEFI), is sometimes used to 

describe a major disruption to the FPGA that requires reconfiguration or power cycling to 

restore operation.  A SEFI usually occurs in the configuration or support sections of the 

FPGA, such as the configuration memory or the JTAG interface [12].  
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Figure 10.  Simulation of a single-event transient occurring on a clock edge (in red), 

causing a missed transition of a flip-flip (in blue) (from [17]) 

The radiation conditions that satellites must operate in are quite varied in the type 

and relative strength of the flux encountered.  Every satellite sees wide ranges of 

conditions from cosmic rays, solar storms and sun spots, and variations in the earth’s 

magnetic belts.  For any FPGA operating under these conditions, it is not a question of if 

these SEEs cause errors, but how frequently these errors will occur.  Some design 

features and methods can reduce the probability of errors, and other features try to limit 

the effects of the errors.  In any case, the errors will occur and must be properly 

accounted for in the overall design. 

B. FAULT TOLERANCE BY RADIATION HARDENING 

Reducing the radiation induced error rate in FPGAs and ASICs is a priority for 

semiconductor manufacturers.  Several methods have been successfully employed, from 

changing the composition of the base materials used in manufacturing to changing the 

size and shape of features on the silicon.  Each of these methods have costs in terms of 

performance or capability of the device.  Due to their more limited demand and more 

complex manufacturing, these devices also come at a much higher dollar cost per unit.  

FPGAs can also be more susceptible to radiation effects than ASICs.  The internal 

structure of an FPGA is reconfigurable, and this additional flexibility adds additional 

locations and modes of failure as the reconfiguration matrix and memory can also be 

affected. 
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1. Silicon on Insulator and Silicon on Sapphire 

Silicon-on-insulator (SOI) technology is a method of manufacturing 

semiconductor devices using a layer of electrical insulation, typically silicon dioxide, to 

separate the bulk silicon layers.  This additional layer of material reduces the charge 

collection volume of each transistor, makes the devices much more resistant to SEUs, and 

immune to most types of SEL [18].  Much of the industry drive to improve this 

technology is based on SOI’s lower parasitic capacitance, which improves power 

consumption for handheld devices.  As a result, many newer devices, such as the Xilinx 

Virtex-5, use SOI in their standard products, providing an improvement in radiation 

hardness for no additional cost.  Silicon on sapphire (SOS) is similar to SOI but uses a 

silicon film grown onto a sapphire (AL2O3) wafer.  SOS devices are considerably more 

resistant to radiation [19] but come with a much higher price tag and considerably fewer 

options on the market.   

 
Figure 11.  Example comparing a bulk silicon transistor to Peregrine Semiconductor’s 

UltraCMOS4 (SOS) process (from [20]) 

                                                 
4 UltraCMOS is a registered trademark of Peregrine Semiconductor, Inc. 
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2. FPGA Technology 

The development of programmable logic devices (PLDs) began in the mid-1970s 

as engineers looked for ways to overcome the significant non-recurring engineering 

(NRE) costs of building an ASIC [21].  These devices were needed for two primary tasks.  

One, provide a means of prototyping and testing a design before mass producing an 

ASIC.  The significant cost of creating a single ASIC made this a major cost saving step 

for any project.  The second task was to serve as operational hardware for small-scale 

production.  Even today it is not cost effective to make small quantities of custom ASIC 

devices.  This makes FPGA technology ideal for space applications, where frequently 

only one or two vehicles are made the same.  Early PLDs and FPGAs had low clock 

speeds and a limited number of gates and interconnections.  Modern FPGAs, such as the 

Xilinx Virtex-7,5 offer over two million logic cells, 68 Mb of on-chip memory, and can 

handle 2.9 Tb/sec of I/O via 1200 I/O pins [22].  This capability allows an engineer to put 

the capabilities of entire computer systems into a single chip [23]. 

An FPGA consists of several components manufactured onto a common piece of 

substrate material. This integrated circuit device is configurable via a series of 

programmable switches connecting the internal logic blocks.  An example of a typical 

FPGA can be seen in Figure 12.  Each of the configurable logic blocks (CLBs) contains a 

series of lookup table (LUTs) and multiplexors (MUXs) that can be assembled and 

programed per the user’s specifications [24].  Each CLB is interconnected via an 

underlying matrix, and these matrix connections are also programmable to allow 

connection between CLBs, input/output (I/O) pins on the FPGA package, and other 

internal components such as memory and built-in clock devices.   Each component is 

susceptible to radiation and each exhibits different responses to SEEs.  The 

interconnection matrix itself can also be susceptible to SEEs and must be considered 

during design.  There are three common categories of FPGAs that are used in aerospace  

 

 

                                                 
5 Virtex® is a registered trademark of Xilinx, Inc. 
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applications that are differentiated based on the methods used to program their 

interconnection matrix.  These types are anti-fuse, static random access memory (SRAM) 

based, and flash based. 

 
Figure 12.  Typical FPGA internal structure (from [24]) 

a. Anti-fuse FPGAs 

Anti-fuse FPGAs are named as such due to the nature of their internal 

switch matrix.  A regular fuse opens when a sufficiently high current is passed through it.  

An “anti-fuse” circuit closes when a higher-than-normal current is passed through it.  

Using a programming device, the desired internal switches are permanently fused closed 

by high current pulses.  The switch matrix in anti-fuse FPGA is one-time-programmable 

(OTP).  Once the FPGA design has been programmed, it cannot be changed.  This design 

method offers considerably less flexibility than other methods, but the anti-fuse FPGA 

does offer a switch matrix that is largely immune to SEUs and TID effects [25].  The 

CLBs and other internal structures are still susceptible to radiation effects.  The one-time-

only aspect of this type of FPGA makes them less desirable in many space applications, 

as they cannot be reconfigured to correct problems or take on new capabilities. 
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Table 2.   Comparison of FPGA switch technologies (from [25])  

 

b. Flash Based FPGAs 

Flash-based FPGAs use a switch matrix formed of floating gate 

transistors.  An internal circuit called a charge pump controls the current to each of these 

switches.  Their configuration is non-volatile and stored in a NAND or NOR-type 

internal flash memory and thus is maintained during power cycling [26].  Flash-based 

FPGAs can be reprogrammed multiple times while installed in the system.  However, the 

charge pumps are susceptible to TID effects and degrade over time in a radiation field.  

Typical flash memory structures are NAND based, and these memory structures are also 

sensitive to TID based damage [27]. 

c. SRAM Based FPGAs 

The last type of FPGA considered here is the SRAM-based design.  

Similar to the flash-based version, the configuration for this FPGA is stored in memory.  

In this design, the configuration memory is stored in SRAM switches.   A non-volatile 

memory, either on or off-chip, holds the configuration bit stream until the device is 

powered on.  The internal switch matrix is typically a multiplexor controlled by the 

configuration memory.  This has the advantage of a larger number of possible 

configurations as well as thousands of reprogramming cycles.  The configuration memory 
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itself is volatile, and the device must reprogram itself at power-on.  SRAM based devices 

are susceptible to SEUs in both the logic blocks and the configuration matrix.   

 
Figure 13.  Example of short and open SEUs in an FGPA switch matrix (from [28]) 

To increase their radiation resistance, manufacturers add redundancy and 

logic design features to the SRAM memory of some of these devices.  Xilinx for 

example, offers a single-error correction, double-error detection (SECDED) capability for 

the configuration memory that is built into the FPGA [29] for their Virtex-56 and newer 

series of FPGAs.  This capability allows the device to automatically correct any single-bit 

memory error on boot and configuration and detect and report an error of two bits.  These 

additional logic features, combined with the radiation hardened physical structures, make 

these “space grade” FPGAs extremely resistant to SEUs but also extremely expensive. 

SRAM based FPGAs have additional circuitry requirements that can raise 

the deployment cost of both the rad-hard and normal aerospace designs.  These FPGAs 

require secondary circuitry on the associated PCB to monitor for errors and provide a 

means of power cycling to restore the base configuration in case of an error.  Older 

designs required even more external devices such as DRAM, voltage regulators, and 

oscillators.  Newer FPGA devices have all these features internal to device, reducing the 

requirements.  Despite these drawbacks, SRAM based FPGAs are still very popular due 

to their extremely high feature density, flexibility, and high switching speed.   

                                                 
6 Virtex® is a registered trademark of Xilinx, Inc. 
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C. FAULT TOLERANCE BY LOGIC DESIGN 

There are a number of fault-tolerant methods that have been developed to improve 

the reliability of computer systems and logic devices.  These designs have been used any 

time a very high reliability system is required, such as life-critical medical devices or 

devices controlling nuclear reactor safety systems.  The objective of these designs is to 

ensure that no single fault can prevent the proper operation of the overall system.  There 

are many variations of redundancy logic fault tolerance, including triple-modular 

redundancy (TMR), dual-modular redundancy (DMR), triple-interwoven logic (TIL), and 

quadded logic.  Fault tolerance can also be provided with reconfiguration based methods, 

such as scrubbing [30].  Regardless of the specific method or combination of methods, 

there are three basic goals they all share: 

• No single point of failure can cause a system failure 

• Faults can be isolated to the component that produced the error 

• Faults are contained to prevent propagation 

While every method improves the overall reliability of a given logic design, there 

is a cost in terms of performance.  A simple duplication design consumes more than twice 

the FPGA resources than a non-redundant design.  The more complex methods can 

consume nearly four times the resources.  This must be taken into consideration early in 

the design process to ensure sufficient FPGA capacity is available. 

1. Quadded Logic 

One of the earliest forms of redundancy was proposed by a Bell Telephone 

employee named J. G. Tyron in 1958 [31].  His concept, called “quadded logic,” took a 

simple logic design and radically increased the fault tolerance by replacing every gate 

with four similar gates, using a cross-connection scheme to interconnect each gate.  

These cross-connects are critical to ensure fault tolerance.  An example for a simple half-

adder is shown in Figure 14. This concept is resistant to SEUs, with errors being self-

corrected between stages.  Just from this simple example, it is clear that the minimum 

price for this type of fault tolerance is four times the FPGA resources.   
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Figure 14.  NOR-based half-adder (a) and quadded logic version (b) (from [32]). 

2. Quadruple Force Decide Redundancy  

Quadruple force decide redundancy (QFDR) is a modified version of quadded 

logic with some minor variations.  In particular QFDR can be applied to logic structures 

more complex than simple gates.  By using a “force decide” layer between logic sections, 

it can detect when one of the four inputs is different from its neighbors and force an error 

bit that is carried to the following layer, where the decide step selects the inputs from the  
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non-error containing logic [30].  QFDR has the advantages of being scalable for logic 

structures much larger than single gates but still incurs the high FPGA resource penalty 

of quadded logic. 

3. Triple-Modular Redundancy 

Improvements in reliability of computers via an arrangement of redundant circuits 

and voting was initially developed by J. Von Neumann in 1965.  The output of a series of 

three identical logic functions is sent to a voter circuit, which he called the “majority 

organ” [33].  The voter compares the three inputs and provides an output based on a 

majority function, as shown in Figure 15.  The number of inputs to a voter is odd to 

ensure that the result is unambiguous [34].  This basic design has a serious flaw, in that 

an error in the voter circuit could result in an erroneous output signal.  To account for this 

issue, the voter circuitry itself is usually replicated as well, which can be seen in Figure 

16.  Even in this case, some final determination must be made to determine the majority 

for the three outputs.   

 
Figure 15.  Basic concept for triple-modular redundancy 
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Figure 16.  TMR with triplicated voter circuits. 

Use of TMR in an FPGA can take several forms based on the needs of the 

designer.  Block TMR (BTMR) is the simplest form and consists of a single voter circuit 

for triplicated blocks of logic.  This method is no different from the basic TMR methods 

that have just been described, except the logic blocks may be fairly complex functions.  

As the complexity of the blocks increase, this method becomes less useful for real world 

application.  Errors in more than one block simultaneously become more likely as the 

block size increases, and with no feedback function to “reset” a block after an error, the 

system may soon be corrupted [35]. 

Local TMR (LTMR) is an improvement on BTMR.  In LTMR, a set of flip-flops 

(FFs) are placed between the output of voter circuits and the next logic block.  In this 

case, the correctly voted value is sent to each FF in that layer.  This method provides a 

feedback feature and ensures that errors are not propagated past any given logic stage 

[35], however, this method has drawbacks as well.  In LTMR the individual clock and 

reset/clear lines for the FFs are not triplicated and can cause potential errors if an SEU 

occurs on one of those signals.  In addition, the FFs themselves add additional complexity 

and increase the sensitivity of the design to SETs.   
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A further improvement in reliability was introduced in the form of global TMR 

(GTMR).  Similar to LTMR, the logic blocks are divided by FFs.  In GTMR, however, 

all the clock generators and other asynchronous inputs such as clear signals are 

triplicated.  This method has the greatest requirements for FPGA resources and 

introduces new potential problems if the clocks between the modules are not properly 

synchronized.  The final method discussed here, distributed TMR (DTMR), attempts to 

correct this problem by triplicating all the elements but uses a global clock and reset 

signal [35].  Regardless of the specific TMR method used, there are significant 

challenges in verification of the final FPGA design to ensure all critical elements are 

properly triplicated.   

4. Triplicated Interwoven Redundancy 

Triple interwoven redundancy is another form of fault tolerance and is formed 

from a combination of some quadded logic concepts with TMR.  In this method, the 

initial logic design is triplicated, and the resulting outputs are cross-connected in a similar 

fashion to quadded logic.  The design must first be broken down to a gate-level and 

inputs and outputs classified as critical or subcritical based on the gate types.  For 

example, a stuck-at-zero fault is critical for a NAND gate but subcritical for a NOR gate.  

Then the gates are interwoven at each state to ensure that a critical output is a subcritical 

input for the next stage.  Ideally, as the error progresses through the logic, it is eventually 

“healed” and disappears.  An example of the half-adder discussed earlier but produced 

via a TIR method is seen in Figure 17.  This method has proven to be comparable in 

terms of fault tolerance to TMR methods [36]. 
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Figure 17.  A NAND based half-adder with triple interwoven redundancy (from [36]) 

5. Error Correcting Codes and Reduced Precision Redundancy 

Two other fault-tolerance methods used in digital logic systems are error 

correcting codes (ECC) and reduced precision redundancy (RPR).  In an ECC system, 

such as a Hamming code, a mathematical algorithm is performed on a bit stream or 

memory segment, such as a group of registers [37].  This method is used to detect and 

correct single bit errors by adding redundant bits and setting allowed bit patterns.  If the 

actual pattern does not match one of the allowed patterns, it can be corrected by changing 

the offending bit.  Another fault protection method is known as reduced precision 

redundancy (RPR).  In an RPR system, two less-precise versions of the original circuit 

are operated in parallel [38].  For example, if the original circuit was a 64-bit 
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mathematical processor, an RPR version may be a much smaller 32 or 16-bit system.  

The outputs of these three parallel processes are compared, and if an error in the precise 

version is detected, the lower precision solution is used, giving a “good enough” solution 

rather than an outright error. If the error is in one of the two lower-precision results, then 

the precise result is deemed to be correct. This method can be employed internally to an 

FPGA for arithmetic processing tasks but not for general logic [6].  In the case of the 

NPSCuL sequencer, neither of these methods is appropriate.  The sequencer has a very 

limited memory storage, making ECC protection impractical.  As the sequencer operates 

only as a simple sequential machine, it has no complex processing, and as such, a reduced 

precision version is not possible. 

6. Configuration Scrubbing 

Configuration scrubbing in an FPGA is performed when the configuration 

memory is periodically refreshed with a “golden copy” of the memory.  This resets the 

device to a known-good state and clears any SEUs that may have occurred in the 

configuration memory.  In order to be effective, the configuration memory must be error-

free.  Many manufacturers use ECC storage for the memory to provide SECDED features 

for the memory itself [25].  The scrubbing can also be performed any time an error is 

detected in the logic output, but this requires additional logic to detect the errors internal 

to the logic design. 

A complete scrub of an FPGA renders it inoperable until the scrub is completed.  

The device must then be restarted and allowed to operate.  In the case of mission-critical 

systems, this necessitates multiple redundant FPGAs, driving up the cost of the system.  

To avoid this, an alternate method termed “readback and compare” [39] is implemented.  

In this method, the configuration memory is first read, then compared to the reference 

copy.  The re-write of the FPGA is then only required if an error is detected.  Another 

alternative is partial reconfiguration, where only certain sectors or portions of the FPGA 

are reconfigured, leaving the other portions operating [40].  This method is complex and 

requires very detailed planning during the place-and-route step of FPGA planning to 

ensure the logic used is properly located.   
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D. CHAPTER SUMMARY 

In Chapter II, a general background of fault tolerance for FPGA devices and why 

it is required was provided.  The sequencer that is discussed in following chapters will 

operate in a harsh radiation environment.  While on orbit it will encounter radiation at 

varying levels from every direction.  Despite this, the sequencer must operate correctly 

and any faults must not affect the overall operation. 

When a semiconductor device, such as an FPGA, is operated in a radiation field, 

there can be a wide range of potential effects.  Soft and hard errors can be categorized, 

and those can be further broken down into the various types of SEEs such as SEUs, 

SELs, and SETs.  Each type can have a detrimental effect on the routine operation of an 

FPGA.  Long-term exposure, in terms of the TID, must also be considered when 

determining the performance of a particular device.  Different manufacturing techniques 

and materials can reduce these effects significantly.   

Knowing that an FPGA will experience these events to some degree during 

operation, we must discuss how to mitigate the effects.  This is where the various forms 

of logic come into play.  Proper implementation of the different forms of TMR can make 

a device nearly immune to SEEs.  Combined with periodic and situational FPGA 

scrubbing, this can make for a highly reliable device.   

The technology and principles discussed here are critical to the development of 

almost any electronic device destined for operation in a spacecraft.  The mission of the 

spacecraft determines the radiation conditions it encounters, and the performance 

requirements and budget drives the parts selection.  In very high radiation environments, 

even rad-hard devices may experience SEUs.  In low-cost applications such as NPSCuL, 

selecting the largest and most radiation hardened silicon may not be an option.  Proper 

employment of the fault tolerant techniques discussed here is critical for proper operation 

of designs like the NPSCuL sequencer that is discussed in detail in the next chapter. 
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III. SEQUENCER DESIGN 

A. SEQUENCER HISTORY 

When the NPSCuL program was initiated, the engineers had two possible 

concepts for control of P-POD door opening.  The first option was opening via direct 

control from the host spacecraft.  This concept minimizes the need for additional 

hardware and control in the NPSCuL system.  The burden to monitor and control the 

opening of each P-POD door could be handed off to the robust flight computer of the 

launch vehicle [1].  While this concept is attractive for NPS, due to the reductions in cost, 

local testing, and development, it comes at a cost to the launch vehicle.  Relying on host 

control shifts more of the testing burden to the owner of the host spacecraft.  Given that 

the host spacecraft typically operate under a program that is orders of magnitude larger 

than the NPSCuL program, this may not be acceptable.  Even if the host spacecraft’s 

program did accept such a requirement, they would likely require a completed unit for 

testing early in the testing cycle [41].   

The second option for control of the P-POD doors is an independent control 

system, contained entirely within the NPSCuL itself.  This concept uses an on-board 

controller, known as a sequencer, to control the sequence and timing of P-POD door 

opening.  The sequencer also handles any required telemetry data [41].  The sequencer 

receives redundant electrical power from the launch vehicle.  When powered on, it 

commands the non-explosive actuators (NEAs) that actually open the P-POD doors, 

deploying the CubeSat using a spring.  A micro switch attached to each P-POD door 

allows for monitoring of the door position by the sequencer or host spacecraft.   

For the first flight planned for the NPSCuL system, the launch vehicle was unable 

to provide all the required power and data lines, and an NPS-designed sequencer was not 

going to be available within the expected flight delivery timeline.  Therefore, a 

commercial product, designed and built by Ecliptic Enterprises, was to be used for the 

mission.  This sequencer was designed for integration into an Atlas-V launch [42].  

Ecliptic Enterprises worked with both NPS and ULA to ensure proper integration with 
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the NPSCuL and the Atlas V’s Centaur upper stage avionics.  The CubeSats selected for 

the first flight were not ready on schedule and so the first NPSCuL flight was cancelled. 

The sequencer is an essential piece of the entire NPSCuL system, serving as the 

primary control system.  If the sequencer fails to operate, the entire mission of the 

NPSCuL fails, as none of the installed CubeSats are launched.  If the P-PODs open 

without sufficient delay between deployments, the CubeSats could collide.  The NPSCuL 

is an auxiliary payload on a larger mission.  In a worst case scenario, a failure of 

NPSCuL could endanger the primary mission spacecraft.  This, above all other 

requirements, must not be allowed to happen. 

B. REQUIREMENTS 

The design requirements for the sequencer discussed here are consolidated from a 

variety of sources.  Some requirements such as the specific dimensions allowed for the 

hardware mounting are taken directly from NPSCuL design documents [43] [10].  Others 

are drawn from datasheets of components selected as possible candidates for use in future 

designs.  Still other requirements were generated following discussion with Dr. James 

Newman and Dr. Herschel Loomis during the course of design.   

1. Operational Requirements 

Operational requirements for the sequencer answer the basic question of “what 

does it do”?  These are the primary considerations for all other design questions.  The 

sequencer must meet the following requirements to meet the mission objectives of the 

NPSCuL system: 

• Provide a fully programmable launch sequence for eight P-PODs.  The 
sequence and timing of individual P-POD launches is reprogrammable. 

• The delay between P-POD launches can be set from one second to one 
hour in one second intervals. 

• The launch sequence commences automatically at power on.  A 
programmable delay from power on to initial launch is provided but no 
additional launch command is needed.   

• No hold/pause feature is required.  To halt the launch, the system must be 
powered down.   
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• The system must be fault tolerant.  SEEs and other system faults must 
neither cause an inadvertent launch nor prevent an expected launch. 

• The launch sequence and timing can be reprogrammed at any time up to a 
few hours prior to launch.  Reconfiguration capability after launch is not 
provided. 

2. Electrical Interface Requirements 

The sequencer designed for this application has three primary electrical interfaces.  

Primary and redundant electrical power is supplied from the host spacecraft.  Primary and 

redundant power from the sequencer is supplied to each P-POD to actuate the door itself.  

Finally, each P-POD has a door switch, which allows the sequencer to determine whether 

the P-POD door is closed or open.   

a. Power Supply 

Typical host spacecraft operate using a 28 V DC electrical distribution 

bus.  The completed sequencer operates at this voltage.  Specific peak and idle current 

values are available until final hardware selection.  An estimate of 8 A peak and 2 A idle 

is used here with the following assumptions: 

• A typical NEA draws 6 A when actuated (additional detail provided in 
following sections) 

• No more than 1 P-POD NEA are actuated at a time 

• The internal power supply converts the incoming 28 VDC power to the 
5.0 V, 3.3 V and other voltages required for the FPGA and host adapter.   

• The power supply provides the necessary voltage regulation and adequate 
thermal and electrical protection for the sequencer. 

b. Non-Explosive Actuators 

The electrical actuators for the P-POD doors consist of a small spring-

loaded arm held in position by a material with a low melting point.  This material is 

surrounded by an electrical heating element.  When sufficient electrical current is 

supplied, the material softens, and the spring actuates the arm.  This arm then 

mechanically unlatches the P-POD door.  An example can be seen in Figure 18.  These  
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devices each have unique operating curves that delineate the time for actuation based on 

the supplied current.  For this operation, the maximum actuation time of 120 ms [1] is 

used. 

 
Figure 18.  NEA model 9102G non-explosive release mechanism (from [1]) 

c. Door Position Detection 

Two simple micro switches are mounted to the P-POD door mechanism.  

The switches are connected such that when the P-POD door is closed, the circuit is 

closed.  When the P-POD door opens, the switch actuates and the circuit opens.  This 

switch is connected to a 3.3 V or 5.0 V power supply connection and simply provides a 

binary signal regarding the position of the P-POD door [43].  While this signal is used to 

indicate the successful door opening of a P-POD, it must be noted that there is no 

onboard mechanism to determine if the CubeSat actually deployed properly.  The 

sequencer only has indications of door position.  The purpose of the switches is to 

validate that any given door does not open until it is commanded to do so.  Although a 

failure resulting in an open door, and therefore CubeSat deployment, prior to launch is 

considered unrealistic, it is prudent to monitor the doors so that in the event of a launch 

anomaly, the NPSCuL system can be exonerated or implicated, as appropriate. 
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3. Mechanical Requirements 

The final design for the sequencer must fit within the volume of the NPSCuL 

splitter auxiliary device (SAD) enclosure.  The launch vehicle for the second planned 

flight of NPSCuL had sufficient resources to provide eight primary and redundant power 

and eight data lines.  Therefore, all that NPSCuL had to provide was a splitter auxiliary 

device (SAD).  The original version of the SAD is shown in Figure 19.  This original 

version provided a pass-through connection for power and control from the host 

spacecraft’s flight computer to the individual P-PODs on the NPSCuL.  This enclosure 

mounts directly to the side of the NPSCuL structure.  The second version of the SAD 

incorporated a PCB mounted to the bottom to replace the wiring harness bundles and to 

simplify the manufacturing of the harnesses. 

 
Figure 19.  NPSCuL splitter auxiliary device with wiring harnesses (from [2]) 

A newer version also incorporates a PCB to replace the wiring harnesses and 

provides additional space to mount the FPGA, power supply, relays, and other electrical 

components.  The design for this PCB can be seen in Figure 20. This enclosure provides 

external interface connectors for both primary and auxiliary power for the sequencer’s 

power supply.  These eight connections supply power to the NEAs and door position 

switches.  For the purposes of this thesis, the specifics of mechanical mounting, sizing, 
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and issues such as thermal control are not discussed.  This requirement is only used for 

rough estimates of required PCB space for a proposed final design. 

 
Figure 20.  SAD with PCB design, showing mounting and connector location (from [2]) 

4. Performance Requirements 

The initial performance requirements for the sequencer are fairly simple and easy 

to accomplish.  The device must operate quickly enough to execute the assigned launch 

sequence.  A typical launch sequence is set to allow two or three minutes between 

launches.  A launch command must be applied to the NEA for a minimum of 120 ms to 

ensure a successful launch.  As there are no limiting high-speed clocking requirements, a 

design decision was made to select the lowest possible clock speed since SEUs have been 

demonstrated to occur more frequently as clock speeds are increased [44]. Operating at 

the lowest clock speed necessary to meet these requirements provides maximum 

reliability. 

C. SEQUENCER FLOW AND STATE MACHINE 

The simplest method of meeting the operational requirements listed above is a 

simple state machine using sequential logic.  A method using a pre-existing design, such 
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as the NPS configurable fault tolerant processor (CFTP) [3], was briefly considered but 

would be significantly more complex than this application requires, and that complexity 

brings along an increased susceptibility to SEUs. 

1. Flowcharting the Design 

The first step taken was to incorporate the operational requirements into a 

flowchart for design.  This flowchart is seen in Figure 21.  A number of design decisions 

were made at this point for the sequencer.   
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Figure 21.  Sequencer flow chart 

The first decision was to make use of the P-POD door status signal.  For the 

purposes of testing, as well as possible future use in reporting telemetry to a ground 

station or host system, a launch status is recorded for each P-POD launch.  When a 

launch command is issued to a given P-POD, the door status is checked continuously.  If 

the door is reported as “OPEN,” the launch is recorded as a success.  If the door status 

does not report “OPEN” within a set timeout period, then the door is assumed to be stuck 
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or the NEA failed.  In this case, the launch is recorded as failed.  The available sensors on 

the P-POD do not detect a failure where the door only opens partially, the CubeSat jams 

on launch, or if the launching spring fails.  In each of these failure cases, the sequencer 

still records a successful launch. 

The second important design decision is the use of a separate “memory” to store 

the launch sequence and desired launch delays.  To maximize the simplicity of the 

system, this sequence and delays can be hard-coded into the final design and integrated 

directly into the logic.  This limits the complexity and makes the system that much more 

resistant to logic failures; however, this conflicts with the desire to have an easily 

reconfigurable design.  A separate memory within the FPGA reduces the requirement to 

re-perform significant levels of testing following a change in launch sequence. 

2. Developing a State Machine 

The next step was determination of what type of sequential machine to use for this 

implementation.  There are two varieties of state machine to consider for this application.  

The Moore machine or the Mealy machine.  In a Moore type machine, the output logic 

function of the circuit depends only on the current state.  In a Mealy machine, the output 

logic function uses both the current state and the current input to determine an output.  In 

this sequencer design, the only external input is the P-POD door status.  As this input 

does not directly impact the output to the NEAs, a Moore machine was chosen.  

The final selection entails eight states for the P-POD launch states and five states 

to record success or failure, start the sequence, advance the sequence and a wait state.  

With a total of 13 states, a four-bit state machine is required.  With 16 possible states, 

measures must be taken in design to ensure the unused states are compensated for to 

prevent an unknown state condition.  With this initial concept completed, development of 

a useful software model could begin. 

D. SOFTWARE DESIGN 

Using the state machine developed, we created a series of functional blocks or modules.  

The design goals at this stage in development were to create a series of modules that 
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would meet the functional goals of the sequencer while being adaptable to one of the 

TMR techniques discussed in Chapter II of this thesis.  This provides a means of 

verification and comparison between a functional base design and a design with fault 

tolerant logic features.  It must also be a design that can be used for a comparison of 

manual and software-controlled TMR solutions.  A block diagram of this design is shown 

in Figure 22.  The modules created and shown here have the functions discussed in the 

following subsections. 

 
Figure 22.  Sequencer block diagram without fault-tolerant features 

1. State Registers 

The module that stores the actual current state of the machine is known as the 

state register.  In this design, these are formed of a parallel group of four D-flip-flops to 

provide the required four-bit state information.  This module is clocked with the global 

clock and has an asynchronous clear input that resets the FFs to the starting state.  The 

input of this module is considered the “next state,” and the output is the “current state” of 

the machine. 

2. Next State Logic 

The next state logic is the “brain” of the sequential machine.  It takes the input 

from the state registers to determine the current state.  Combining that information with 

the input from the P-POD door status switches and the timer and memory modules, it 

determines the next state of the machine.  This is done entirely with combinational logic, 

leading to a very reliable module. 
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Using the design developed in the previous section of this chapter, we established 

a set of inputs and outputs, and each state was developed.  A detailed description of what 

occurs in each state is defined in the following. 

a. Start State 

This is the initial entry state for power up of the state machine.  In this 

state, the first P-POD number and delay are loaded from memory, sent to the timer, and 

the timer is started.  Following a launch, the machine returns to this state for the next 

launch.  The next state for this step is the wait state for all operating conditions, as seen in 

Figure 23. In the block diagram, the next-state arc is labelled with its destination state and 

the outputs that are asserted.  

 
Figure 23.  Algorithmic block diagram for the start state. 

b. Wait State 

In the wait state, the state machine is waiting for the next P-POD launch as 

seen in Figure 24.  The logic first checks the timeout signal.  If the timeout has not been 

raised yet, the machine recycles to the wait state again.  If the timeout has been raised, the 

logic sets the timer for the P-POD door switch delay.  The logic then sets the next state to 

the currently selected P-POD in the launch sequence.  For example, if the current P-POD 

is #4, the next state is the launch state for P-POD #4. 
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Figure 24.  Algorithmic block diagram for the wait state. 

c. Launch State 

Eight of these states exist in the machine, one for each P-POD.  An 

example block diagram is seen in Figure 25.  Upon entering this state, the machine 

immediately starts the timer for the P-POD door.  The actual signal to the NEAs is 

generated by the launch decoder when it detects the state machine entering a P-POD 

launch state.  The machine then checks the door status of the door associated with the P-

POD being launched and the timeout signal.  It remains in the launch state until either the 

door indicates open or the timeout signal is raised.  If the door indicates open, the logic 

assumes the launch was successful and sets the next state to the “launch success” state.  If 

the timeout occurs, the logic assumes the door did not open as expected and sets the next 

state to the “launch fail” state. 
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Figure 25.  Algorithmic block diagram for the launch state. 

d. Launch Success 

In the launch success state, the machine sets the associated launch status 

bit in the memory to one to indicate a successful launch.  It then sets the internal advance 

bit high and sets the next state to the advance state.  A block diagram is shown in Figure 

26.  

 
Figure 26.  Algorithmic block diagram for the launch success state. 
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e. Launch Fail 

In the launch fail state, the machine sets the associated launch status bit in 

the memory to zero to indicate a failed launch.  It then sets the internal advance bit high 

and sets the next state to the advance state.  The block diagram for this is exactly like that 

of the launch success state, except the launch status bit is set to zero vice one. 

f. Advance 

In the advance state, the machine sets up the transition to the next launch 

state.  A check is performed to see if the final P-POD has been launched, as indicated by 

the address already at seven.  If the end has been reached, the next state is set to “done,” 

and the machine operation is halted.  If the end has not been reached, the machine 

advances the address of the current P-POD select lines by one.  This serves to load the 

next P-POD number and associated delay from the memory module.  The timer is reset, 

and the machine next state is set to the start state. 

 
Figure 27.  Algorithmic block diagram for the advance state. 

3. Timer 

The timer used here is a simple counting device.  It has a multi-bit input for a time 

value and a single bit “start” command bit.  It also takes input from the global clock and 
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the system clear commands.  The output is a single bit “timeout” value.  The timer is 

“set” with a value from the memory or next state logic and then started.  It increments its 

internal counter on each clock, and when the set value is reached, the timeout signal is 

raised. 

4. Memory 

The system memory module stores the launch sequence and required time delays 

in a simple lookup table.  This function was placed into a separate module to allow for 

simple changes to the sequence and to allow for future changes to how the sequence was 

stored.  It also stores the “launch status” bit for each P-POD, a one for a launch success 

and a zero for a launch failure.  Future revisions can use more complex storage methods 

and external memory or internal FPGA memory.  This module was generated as a 

separate unit to simplify the future needs of the engineer.  To mimic a real memory, this 

module takes a three-bit address input and a launch status bit input.  The module then 

provides a three-bit number for the selected P-POD and a four-bit number for the 

programmed time delay for that particular P-POD. 

5. 3-Bit Decoder 

The final component of the design is the output decoder.  This module has a three 

bit input, and eight individual output connections, one output for each P-POD.  This 

component reads the current state of the machine, and if the machine is in a “launch” 

state, it generates a high logic signal on the appropriate output pin.  This module is 

nothing more than a standard binary decoder in this application. 

6. State Encoding 

Selection of state encoding was performed to make the final output simple.  This 

allows the least significant three bits of the state registers to be fed directly to the three-

bit decoder to command the NEAs for launch.  The state encoding that was employed is 

described in Table 3.  The additional “DONE” state was added from the preliminary state 

diagram to provide a concrete final state and prevent an error from causing the sequencer 

to unnecessarily restart the launch sequence. 
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Table 3.   Selected state encoding. 

 
The unused states in this design must be accounted for during the actual 

implementation of the design.  If an SEU or other error occurs during operation that 

causes a bit flip in one of the state flip flops, the machine can enter an undefined state and 

remain stuck there until the entire system is reset.  The manual method of dealing with 

this issue is to assign states to every unused state that simply direct the machine to a 

known good state on the next clock cycle.  For this design, additional states that direct the 

machine back to the “WAIT” state are appropriate.  Using the modern design software 

however, we can create a “default” state, and the software will automatically correct this 

problem without the need for multiple additional entries.  The complete behavioral code 

developed to fully describe this machine is found in Appendix B. 

E. HARDWARE DESCRIPTION 

During the course of design, a potential problem was recognized regarding the 

output signals to the NEAs.  Regardless of the fault tolerance method used in the FPGA, 

each output signal must still leave the chip itself via  individual output pins, and that one 

State MSB LSB
Launch P-POD #1 0 0 0 0
Launch P-POD #2 0 0 0 1
Launch P-POD #3 0 0 1 0
Launch P-POD #4 0 0 1 1
Launch P-POD #5 0 1 0 0
Launch P-POD #6 0 1 0 1
Launch P-POD #7 0 1 1 0
Launch P-POD #8 0 1 1 1
START 1 0 0 0
WAIT 1 0 0 1
ADVANCE 1 0 1 0
LAUNCH FAIL 1 0 1 1
LAUNCH SUCCESS 1 1 0 0
DONE 1 1 0 1
UNUSED 1 1 1 0
UNUSED 1 1 1 1

State Encoding
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signal wire is a potential point of failure for the overall system.  To mitigate this effect, 

another solution was proposed.  The output of the sequencer logic to the P-POD’s NEA 

needs external fault tolerance.  A final output voter must be located outside the FPGA 

itself on the supporting PCB.   

1. Hardened Launch Voter 

The “hardened launch voter” was created to provide a final fault tolerant step 

before a launch signal is sent to the P-PODs NEA.  This method requires that multiple 

outputs from the FPGA are fed into a radiation hardened majority voter to produce a final 

launch command.  For this design, a three output design was used but could be expanded 

if required.  A simple schematic can be seen in Figure 28. This design uses radiation 

hardened, solid state relay components.  The Microsemi Corporation offers parts such as 

the MHS series of five amp relay parts that fit this application very well [45].   

 
Figure 28.  Radiation hardened launch voter 

The construction and integration of this hardware into the actual SAD PCB will 

be performed during future integration.  This hardware can provide additional fault 

tolerance for launch regardless of the particular fault tolerance method used in the 

sequencer itself.   

For the purposes of this thesis, the hardware voter is simulated with a set of 

simple logic gates.  A single output can then be generated and the results for triplicated 
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modules can be compared.  Due to the very robust and radiation resistant design for this 

hardware, it is very unlikely that any SEEs will occur during operation.  In a real 

application, the FPGA logic experiences significant errors before an error occurred in the 

hardware voter.  For this reason, SEEs in the simulated hardware voter module are not 

explored. 

2. Input Triplication 

The only input to the sequencer as designed are eight single bit inputs, one from 

each P-POD door switch.  In most fault tolerant designs, this input requires fault 

protection as well.  In that situation, a redundant series of inputs needs to be obtained 

from the source.  These redundant inputs then require their own voter or verification logic 

to deal with potential SETs in the input signals and buffers.  This step was not taken for 

this sequencer for these two reasons. 

The door status switch input serves an informational purpose only.  The 

sequencer’s next state logic decision to launch or not to launch a P-POD is not based on 

this information.  This signal serves only to determine the timeout status to exit a launch 

state slightly quicker.  In the worst case scenario, an SEU in this signal causes a 

successful launch to be recorded internally as a launch failure.  As the signal itself is 

never used as definitive proof of a successful CubeSat deployment, this should not 

present a problem during operation. 

The signal inputs and outputs into an FPGA are also fairly robust devices.  These 

drivers are much less susceptible to SEEs than other components of the FPGA.  Due to 

the internal construction, several adjacent transistors need to be affected simultaneously 

to cause an SET in the I/O pins [46].  Given these reasons, and the desire to keep the 

design simple for manual TMR, the decision was made not to triplicate the inputs for the 

sequencer.  These arguments and discussion points apply just as accurately to real flight 

hardware as well as the academic scenario.   
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F. CHAPTER SUMMARY 

In this chapter the history and background of the NPSCuL P-POD deployment 

sequencer was discussed.  The two control options were defined, and the importance of 

the proper operation of the onboard system was explained.   

Following this overview, we explored the requirements of the sequencer in detail.  

The operational requirements were carefully laid out and justified.  These operational 

requirements answered the real question about what the sequencer actually does for the 

NPSCuL.  Additional requirements for both the electrical and mechanical systems are 

defined and require the sequencer to operate within the existing hardware limits.  

Finally, the traditional design process for a sequential machine was applied to this 

example case.  A flowchart was created covering the operational requirements, and a 

Moore-style state machine was developed from the flowchart.  Once this was created, a 

more detailed breakdown into modules was performed, and specific details were 

finalized.  A design modification to add TMR reliability to the existing SAD Version 3 

PCB was proposed, and final design choices were explained.  The Verilog software 

description of the sequencer itself, found in Appendix B, was then developed. 

Using the sequencer design developed here, we can now perform testing to 

determine if this design performs as expected.  Software simulations can be created to 

prototype and refine the design, and the fault tolerance of the simple sequencer machine 

can be compared to that of a redundant TMR version.  Once the operation and 

performance is satisfactory, the design can be transferred to test hardware for further 

verification.   
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IV. SEQUENCER FAULT TOLERANCE 

A. SOFTWARE IMPLEMENTATION AND TESTING METHODS 

The operation of the sequencer design detailed here is simple to test.  A designer 

must enter the desired launch sequence and delay times into the memory module, then 

run a behavioral simulation in a software tool to show that the design provides the 

appropriate output at the appropriate times to the launch hardware.  In order to test the 

fault tolerance of the design, a more complex design is needed.  Some means of inserting 

transient and permanent faults of various types to any potential location within the design 

is necessary. 

1. Software Tools 

To implement this design in hardware, the machine must first be translated into a 

hardware description language (HDL).  There are many different types of HDL, but two 

in particular are the most widely supported and recognized for FPGA design, Verilog and 

very-high-speed integrated circuit hardware description language (VHSIC-HDL or 

simply VHDL).  The majority of design and testing tools available in the industry support 

either of these two primary HDLs.  Both languages offer similar features, and there is 

little clear advantage of one over another, the choice primarily being what the 

programmer is most familiar with.  Verilog does have a slight advantage in creating very 

low-level constructs, down to individual gate level.  VHDL tends to perform better than 

Verilog at very high levels of abstraction, with large system-level blocks.  With this 

consideration in mind, Verilog was chosen as the preferred HDL for this design. 
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Figure 29.  A comparison of Verilog and VHDL considering capability and level of 

abstraction required (from [47]) 

The selection of a development environment for the generation and testing of the 

design is an important choice before moving forward.  All of the major FGPA 

manufacturers, including Xilinx, Microsemi, and Altera offer complete integrated 

development software packages, all tailored to primarily support their own hardware 

devices.  Following a brief review of the available environments, we selected the Xilinx 

Integrated Software Environment (ISE7).  This tool set offers a complete solution for 

logic design and accepts Verilog descriptions as well as allowing for creation of designs 

via schematic.  Extremely detailed levels of control for all aspects of the design are 

provided from the initial creation to device programming and testing.  The WebPACK8 

version of their ISE is provided as a free download and provides the majority of the 

functionality of the other paid versions.  While Altera and Microsemi offer very similar 

offerings, the selection was based on one critical factor, which is the behavioral 

                                                 
7 ISE® Design Suite is a registered trademark of Xilinx, Inc. 
8 WebPACK is a trademark of Xilinx, Inc 
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simulation software.  Xilinx bundles their own product, called the ISE simulator (ISim), 

into the Xilinx ISE as shown in Figure 30.  This simulation software is very important to 

demonstrate the functionality of the sequencer design.  ISim supports mixed 

Verilog/VHDL, full debug capabilities, and waveform tracing.  A single-click 

recompile/rerun feature allows the user to quickly make changes to the inputs or the 

design and repeat the simulation.  This is a critical capability for the fault tolerance 

testing that must be performed. 

 
Figure 30.  Xilinx ISE simulator (ISim). 

2. Testing Methods 

Testing the functional operation of the sequencer design is a simple matter.  With 

only eight inputs in the form of door position indications, traditional testing requires 

testing every possible combinations of inputs and validating the outputs.  With eight input 

bits, this corresponds to 256 possible test cases.  This number of cases would be time 

consuming but easy to perform, but this level of testing does not take into account the 

multiple launch sequences or delays that can be programmed.  This design has 40,320 

possible combinations of launch sequence, and each sequence has 16 different possible 

delays.  Doing exhaustive testing requires over 44 quadrillion test cases.  While this is 
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possible with automated tools and scripts, it is time consuming and likely unnecessary.  

With this simple design, the test cases can be reduced to just the few cases necessary to 

show proper operation for the expected operating conditions. 

a. Potential Error Types 

The more important testing is that of the design’s performance when experiencing 

SEUs and SETs during operation.  As discussed in previous chapters, these effects can be 

reduced to three typical effects on the logic of the design.   

(1) Stuck-at-Zero.  In this error type, the value at a particular 

gate input or output is stuck at zero, indicating a low value regardless of the required 

condition.  For example, an SEE that caused a short to ground inside one of the device 

transistors may cause that signal line to remain at zero until a complete reset and 

reconfiguration of the FPGA occurs. In more extreme cases, such as after considerable 

radiation exposure, this condition may be permanent and render that gate or FPGA logic 

block inoperable. 

(2) Stuck-at-One.  Similar to the stuck-at-zero case, except 

here the short is to a source that is at the FPGA’s operating voltage or simply above the 

threshold voltage for the individual transistor.  This indicates a logical one on the stuck 

signal line. 

(3) Floating Input / Output.  A floating input or output is 

exceptionally difficult to locate or detect during testing of a physical device.  An input 

that is electrically disconnected from a gate input causes the gate to behave erratically.  

The gate may see the input at a zero or one, or the output may randomly oscillate between 

the two values.  The behavior also may not be consistent, and a floating signal may cause 

the gate to produce an erroneous output at one time and a perfectly proper output seconds 

later.  This type of error can propagate through the circuit, as a single floating input 

causes a floating output in the associated gate, which appears as a floating input to the 

next gate.  Unlike a physical circuit in the FPGA, the simulation software can detect these 

errors and provide a means of locating them.  The various simulation packages also 

provide propagation paths for these errors, making it possible to predict the potential 

circuit behavior. 
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(4) Single-Bit Inversions (Bit-Flips).  A bit flip occurs when a 

temporarily stored value in the circuit is altered by an SEE.  Some examples are a bit 

stored in RAM or the current output value of a flip-flop or register.  If an SET occurs at 

the wrong moment in the circuit, then it may also cause a bit flip within the circuit.  A bit 

flip error is more likely to cause a disruption in the operation of a sequential or 

combinational machine than either of the “stuck-at” type errors.  In the case of a bit flip, 

the propagated value is exactly the opposite of what is intended.  In a “stuck-at” situation, 

that particular line may be stuck at the correct value, masking the error.  Due to the 

transient nature of these errors, they can be very difficult to detect until they have already 

caused an operational problem in the circuit. 

There are several other potential error types in a logic circuit that are not 

discussed in detail here, including bridging faults feedback bridging faults, “stuck on” 

gates, and others.  The likelihood of these faults and the stuck-at-zero and stuck-at-one 

errors is very unlikely compared to the possibility of a bit-flip [48].  These other faults 

occur mainly due to manufacturing defects or other damage to the device from 

overheating or overcurrent conditions.  These effects generally do not occur unless 

damage occurs to the configuration memory in flash or SRAM based FPGAs.  Because of 

this, the bit-flip and floating logic are the two error types tested.  In an operational 

environment, these effects can occur at any time, at any location in the circuit.  

Exhaustive testing of each possible effect at every circuit junction is obviously not 

feasible.  These two errors cover both the most likely and worst case scenarios expected 

to be encountered by the sequencer in operation. 

b. Selected Error Sets 

A reduced set of fault locations was selected to provide a representative 

sample of potential errors in the logic.  These locations were selected to ensure they have 

the maximum impact on the operation of the sequencer.  Since most SEUs are transient 

events, the errors inserted are also transient, and the time of their insertion is set to 

provide the maximum error.  The following errors are tested for this sequencer design. 
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(1) Bit-flip in the Timer Module’s Timeout Signal.  The 

timeout signal is used to indicate that the programed value in the timer has been reached.  

This indicates to the sequencer that the time between launches has expired and it should 

proceed with a launch or that the wait for the door opening signal has been reached.  A 

bit flip here can cause an early or delayed activation of a P-POD in the first case or an 

erroneous report of a launch failure in the second case.  The first case is tested and timed 

to try and execute an early launch. 

 
Figure 31.  Timeout signal fault location within the sequencer logic. 

(2) Bit-flip in the P-POD Select Bus from the Memory 

Module.  The P-POD select bus line is the communication path from the memory module 

to the next state selection logic.  An SET in a signal line here can cause the sequencer to 

launch the wrong P-POD and result in an incorrect launch sequence.  An SEU in the 

memory itself has the same result.  Either error has the potential to cause the sequencer to 

“skip” a P-POD as well, with the final result being one P-POD launched early and one 

not launched at all.  This error must be inserted at the proper time, when the sequencer is 

accessing the memory, or it will have no effect on operation. 
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Figure 32.  P-POD select bus fault location within the sequencer logic. 

(3) Bit-flips in the State output Bus from the State Registers. In 

any sequential machine, the current and next-state values determine everything that the 

machine is doing at the time.  Any change to these values results in improper and very 

unpredictable operation.  To keep the testing set manageable, the test here is performed 

on both the least significant bit (LSB) and most significant bits (MSB) of the state 

variable output.  Testing on the state output has the same effect as testing on the state 

variable input, except it introduces a one-clock delay while the error propagates through 

the state registers.  This error must be present for at least one clock cycle to propagate 

through the logic but should have no other time or operation dependence to demonstrate a 

significant change in operation. 

 
Figure 33.  State output bus fault location within the sequencer logic. 
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(4) Floating Input in the state output Bus from the State 

Registers.  A floating input can be inserted to simply track the potential effects of this 

error on a real FPGA.  This test is performed primarily to determine if the simulation of 

TMR design is able to handle a floating input. 

(5) Bit-flip in the TMR Logic Circuit.  When TMR logic is 

introduced to a design, it also introduces additional locations for SEUs to occur.  A bit-

flip inserted inside the TMR logic module determines if the design is able to compensate 

for this particular error.  As the manual TMR method used here involves the state 

registers, the timing of the error insertion is similar to that of the errors inserted in the 

state variable output. 

 
Figure 34.  Basic single bit TMR logic circuit. 

(6) Bit-flip in the FPGA Configuration.  An error in the FPGA 

configuration memory itself is very challenging to simulate, as the exact effects depend 

largely on where the errors occur.  A worst-case SEU can cause any of the previously 

mentioned errors.  SETs by nature clear from the system shortly after they occur, and 

SEUs are cleared when the memory is rewritten.  An SEU inside the configuration 

memory, however, could render the affected gate or path in error until the FPGA 

configuration is rewritten. 

c. Configurable Fault Modules 

At this point in the design, a means of inserting the desired errors into the 

circuit was required.  The initial testing plan required the use of the simulation fault and 
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forced-value tools built into the Xilinx ISim software.  After initial testing, however, 

these tools proved very cumbersome for inserting the types of errors that are required.  A 

configurable fault module was developed and created inside the Xilinx ISE.  A schematic 

of this module can be seen in Figure 35.  

 
Figure 35.  Using a 4-to-1 multiplexor as a fault insertion module. 

The obvious first choice was considered of using a simple selectable 

inverter or two-to-one multiplexor (MUX) for this module.  However, this does not allow 

the testing of a floating input or a fixed zero or one signal.  A larger MUX provides this 

flexibility and reduces the need for multiple types of fault module.  The control of this 

fault module is performed via the two “select” bits of the four-to-one multiplexor used 

here.  The module has four possible modes that can be employed during simulation.  In 

one mode, the module simply passes the input through to the output with no effect on the 

signal.  In the next mode, the module inverts the input as it passes though.  The other two 

modes provide a zero signal and a floating I/O signal.  As these modules are for testing 

only; a SEU fault in these modules or their associated control signals is not considered. 

To establish a baseline of operation, a simple launch sequence was 

selected, starting with P-POD #1, and stepping through each P-POD in increasing 

sequence to P-POD #8.  The minimum launch delay was selected for each P-POD.  This 

reduces both the test length and makes any variations in delay readily apparent.  The 

effect of the door status switches was verified to operate properly.  For the testing here, 
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the doors were assumed to open with no delay, as expected for real-world operation.  As 

such, the door status values were set to indicate open.  These values were programmed 

into the sequence memory module and used for all subsequent tests. 

B. SINGLE MODULE PERFORMANCE 

An initial simulation was performed to establish the reference condition for error-

free operation.  The output waveform can be seen in Figure 36.  

 
Figure 36.  Normal sequencer operation with no fault conditions. 

This waveform shows the eight launch signals that send a signal to the NEAs 

attached to each P-POD.  They operate in the programmed sequence from one to eight, 

with the correct uniform delay between each launch.  The length of each launch pulse and 

the delay is kept to a minimum here to demonstrate the design’s function.  The design of 

this sequential machine requires a minimum time in the launch state of one clock cycle.  

The minimum time between launches is four clock cycles as the machine moves from the 

launch state to record the status of the last launch, then to load the next launch, wait for 

the timeout to expire, and finally move to the next launch state.  For real world use, these 

values would be set to those discussed in the sequencer’s operational requirements.  The 

clock speed used for testing runs at 25 MHz, or a 40 ns period.  A more detailed view of a 

shorter time period can be seen in Figure 37.   The most critical internal signals can been 

seen here, including the current and next state values and the timer start and timeout 

signals.  The state encoding in decimal with the state names can be found in Table 4.   
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Figure 37.  Normal sequencer operation with key internal waveforms visible. 

Table 4.   Sequencer state encoding with decimal state values. 

 

1. Timeout Fault 

Inserting the fault into the timeout signal results in clearly undesired 

behavior, as seen in Figure 38.  In this test case, a fault was inserted in the timeout signal 

line at the 260 ns point, and the fault cleared 60 ns later.  Analysis of the resulting launch 

commands shows an unplanned delay before the launch of P-POD #3.  In the normal 

case, this launch occurs at 290 ns, but in this case, it did not occur until 330 ns.  For this 

particular test case, the bit flip error caused a launch delay by effectively blocking the 

timeout signal.  In cases of longer delays, a bit flip could also cause an early launch.   

State Name State Encoding State Name State Encoding
Launch P-POD #1 0 INIT 8
Launch P-POD #2 1 WAIT 9
Launch P-POD #3 2 ADVANCE 10
Launch P-POD #4 3 LAUNCH FAIL 11
Launch P-POD #5 4 LAUNCH SUCCESS 12
Launch P-POD #6 5 DONE 13
Launch P-POD #7 6 START 14
Launch P-POD #8 7 UNUSED 15
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Figure 38.  Sequencer operation with a fault in the timeout signal. 

2. P-POD Select Fault 

A P-POD select is expected to cause significant problems for the sequence 

if it occurs at the wrong time.  The memory returns the incorrect value in the launch 

sequence, and the logic attempts to launch based on that value.  Similar to the previous 

case, the fault was inserted at the 260 ns point and the fault cleared 60 ns later.  In this 

example, the fault caused the sequencer to select the wrong P-POD, and instead of 

issuing a launch command for P-POD #3, it instead re-launched P-POD #1.  The 

sequencer then continues on with P-POD #4 and completes the remaining sequence.  P-

POD #3 is never activated. This would be a mission failure for the associated CubeSats. 

 
Figure 39.  Sequencer operation with a fault in the P-POD select signal. 
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3. State Output Error—MSB 

As is expected for a sequential machine, an error inserted in the most 

significant bit of the state variables themselves causes a significant series of errors, as 

seen in Figure 40.  The error insertion was performed at the same time as in previous test 

cases.  In this case, we can see that as soon as the error is inserted, the machine 

immediately enters the launch state for P-POD #1, then one clock period later jumps to 

activate P-POD #5.  After the error clears, the normal operation resumes, but P-POD #3 

is never launched. 

 
Figure 40.  Sequencer operation with a fault in the MSB of the state variable. 

Several other test cases were performed for the LSB and MSB of the state 

output to observe the effects of changing the time and duration of the error.  Significant 

problems were seen in every case where the error was inserted during a positive clock 

edge.  To maintain consistency with the following tests, only the first test case presented 

here is used for comparisons.   

4. State Output Error—LSB 

An error inserted into the LSB of the state output caused only a brief delay 

in operation when inserted at the 260 ns point as in previous tests.  During this time, 

shifting that particular bit simply forced the machine back into the wait state for a short 

time.  However, at other times, the effect is more pronounced.  For this case, the error is 

inserted at 200 ns and causes a jump from the activation of P-POD#2 to the launch of P-
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POD#1.  On an actual launch vehicle, this may cause a failure to activate on P-POD#2’s 

NEA if the signal was not inserted for sufficient time.   

 
Figure 41.  Sequencer operations with a fault in the LSB of the state variable. 

C. MANUAL TMR CONFIGURATION AND PERFORMANCE 

The sequencer design implemented here requires a fairly small footprint on the 

FPGA.  To ensure the highest levels of reliability, a distributed TMR scheme was chosen, 

with a unique voter set for each of the triplicated sequencers but a global clock and reset 

line.  In this version of the design, each of the three modules has its own set of NEA 

control outputs.  These are combined via the hardware voter discussed in Chapter III in 

an actual hardware configuration.  A block diagram of this configuration is shown in 

Figure 42.  
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Figure 42.  Block diagram of a DTMR sequencer with hardened launch voters. 

For the software simulation version discussed here, the outputs of the three voters 

are combined with a simple software voter before being combined by the launch decoder.  

A diagram of this modified version can be seen in Figure 43. This was done for several 

reasons.  Primarily, the purpose of this simulation was not to test the function of the 

hardware voter design.  Adding the additional modules to simulate the voters does not 

prove their functionality but only demonstrates the functionality of the simulation.  

Secondly, adding these additional modules complicates the final design and would result 

in an inaccurate final determination of FPGA design overhead.  The launch decoder for 

this design is simple, and testing of this device was not planned per the developed test 

plan.  An SEU that occurs in this portion of the logic is negated by the hardened launch 

voters in the real-world design.   
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Figure 43.  Block diagram of a DTMR sequencer with a single decoder and output voter. 

The core of the TMR concept, the actual voter modules themselves, were created 

next using the basic logic gate constructs of Verilog to keep the final result as simple as 

possible.  A one-bit voter that satisfied the Boolean equation 

 A B A C B C Z+ + =     (1) 

was created.  This logic provides the majority vote of the A, B, and C inputs into the Z 

output.  Four of these one-bit modules were combined into a state voter module.   

An additional module was created with a selectable fault insertion to test an SEU 

internal to a TMR module.  The error here is a simple inversion of a single bit of the voter 

output.  An error on the voter input or certain portions of the first layer of gates is 

absorbed by the voter function and not seen outside the circuit.  The chosen error is the 

worst case situation for a voter SEU.  Using the fault module developed in the previous 

section, we applied the global TMR principles. 

As in the previous case, an initial simulation was performed to establish a baseline 

case with no faults inserted.  This case is shown in Figure 44.  The operation and 

performance of the TMR version is identical to the basic non-TMR sequencer from the  
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previous section, with the launch sequence executing exactly as before.  This 

demonstrates that, at least behaviorally, the addition of the TMR logic does not result in 

any changes to the operation of the design.   

It should be noted that this simulation does not take into account the gate delays 

generated by the additional logic.  When tracing signal paths through the TMR design, 

only two additional gates have been added in the state output path.  Given the high 

performance of most FPGA devices and the low clock speeds at which the sequencer 

operates, this delay is miniscule and is disregarded for this testing. 

 
Figure 44.  Manual TMR sequencer operation with no inserted faults. 

1. Timeout Fault 

Using the same fault insertion times as the previous case, we inserted a 

fault into the timeout line in one of the three timer modules.  The fault signal can be seen 

being inserted and removed in Figure 45. There is no impact from this fault on the output 

of the sequencer.  In this case the affected module would have delayed the launch signal, 

but the other two modules indicated the correct launch signal.  The voter modules used 

the majority vote and updated all three modules with the correct next state. 
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Figure 45.  Manual TMR sequencer operation with a fault in the timeout signal. 

2. P-POD Select Fault 

A P-POD select fault was inserted at the 260 ns point and removed 60 ns 

later, exactly as in the single sequencer test performed earlier.  As shown in the following 

waveform, the single fault has no impact on the overall output of the design, with the 

voter modules correcting the machine to the correct state before the error propagates to 

the output. 

 
Figure 46.  Manual TMR sequencer operation with a fault in the P-POD select signal. 

3. State Output Error—MSB 

The state output errors were evaluated next, with an error inserted in the 

MSB of the state output bus.  In the single sequencer case, this type of error had the most 

significant effect on the overall operation.  The manual TMR can correct this type of 

error as well, leaving the overall output unaffected.   
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Figure 47.  Manual TMR sequencer operation with a fault in the MSB of the state 
variable. 

4. State Output Error—LSB 

An error in the LSB of the state output bus of one module also has no 

effect on the output of the TMR version of the sequencer, as shown in Figure 48.  

 
Figure 48.  Manual TMR sequencer operation with a fault in the LSB of the state variable. 

5. Voter Module Fault 

In this particular simulation, a fault was inserted into one of the voter 

modules.  The fault inverts one of the state output bits from the voter module itself.  The 

erroneous signal is inserted at the 200 ns point and removed 100 ns later.  A longer time 

was selected to allow the signal to fully propagate back to the associated module.  As 

shown in Figure 49, the error has no impact on the overall performance.  The error signal 

only propagates to the final launch voter, where it is filtered out.  In a real hardware 

implementation of this design, the final launch voter would be replaced by the hardened 

launch voters, which would serve the same function.   
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Figure 49.  Manual TMR sequencer operation with a voter module fault. 

D. SOFTWARE TMR CONFIGURATION AND PERFORMANCE 

For a design such as this sequencer, it is possible for a single engineer to create a 

working TMR or other fault tolerant scheme to provide additional reliability for a system.  

As the design becomes more complex, adding these features becomes more and more 

complex and time consuming.  The FPGA industry realized this, and several of the major 

manufactures have developed software tools to automate the process.  In theory, these 

tools should be able to take a single design and produce a triplicated design that performs 

to the same level as an engineer making the design manually but in significantly less 

time. 

The three products considered were Xilinx’s TMRTool9, Mentor Graphics’ 

Precision10 Synthesis, and Synopsys’s Synplify11 Premier.  Unlike the main development 

environments, the manufacturers do not generally offer their TMR software packages as 

free downloads for purely academic uses.  Some of the fault tolerant algorithms and 

information is used by U.S. space programs as well as U.S. nuclear programs, and this the 

technology is restricted by International Traffic in Arms Regulations (ITAR) laws and 

Export Administration Regulation (EAR) controls.  Due to these restrictions, only the 

Synopsys software, Synplify Premier, was available for use in this design.   

                                                 
9 TMRTool® is a registered trademark of Xilinx, Inc. 
10 Precision® is a registered trademark of Mentor Graphics Corporation 
11 Synplify® is a registered trademark of Synopsys, Inc. 
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Figure 50.  Synopsys Synplify Premier with Design Planner main interface screen 

example. 

Transferring the basic sequencer design to the new development environment was 

done by exporting the source Verilog files from the Xilinx ISE software.  These files 

were then imported into the Synplify software as a new project.  The Synplify software 

allows implementation of TMR features using an attribute assigned in the Verilog code.  

This attribute, “syn_radhardlevel” can be assigned to an entire architecture, module, or 

down to the single register level [49].  There are three different rad-hard levels allowed 

by this implementation, combinatorial cell (CC), TMR, and TMR with CC.  Here the 

term CC is used to describe a technique specific to Microsemi’s FPGAs where additional 

FFs are formed using unused combinatorial logic on-chip.  Microsemi’s testing has 

indicated that FFs created using this method provide additional resistance to SEUs [50].   
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To maintain consistency with the manual TMR version that has already been created and 

to allow an “apples to apples” comparison in regard to FPGA resources and timing, the 

standard TMR method was used. 

 
Figure 51.  Synplify’s TMR feature applied to an output, showing software generated 

FF’s and majority voter. 

1. TMR on State out Registers 

For the initial test of the TMR features, the software was configured to perform its 

TMR function on the output of the state registers only.  This setting resulted in the design 

shown in Figure 52. While this result is a useable and functional design, it does not 
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provide the required level of protection from SEUs.  Any errors that occur in the state 

outputs are properly corrected by this implementation.  Any faults that occurred in the 

next state logic, timer, or memory module propagate to the output. 

 
Figure 52.  Design results of automatic TMR applied to state output bus only. 

2. TMR on Top Level Sequencer Module 

To try and provide an equal level of TMR protection with the manual TMR 

discussed previously, a second attempt was made using the Synplify software.  In this 

case, the TMR option was removed from the state output registers and instead applied to 

the overall sequencer module.  The result was closer to the desired result but still not 

complete.  The software applied a TMR solution to the state registers and the registers in 

the memory and timer module but not the overall design.  As shown in Figure 53, this 

clearly provides additional fault tolerance over the first design, but the increase in 

complexity introduces additional problems.  The added gate count from the additional 

voters introduces more locations for SEUs to occur.  This solution also leaves the next-

state logic as a single point-of-failure for the design. 
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Figure 53.  Design result of TMR applied to top level sequencer module. 

Several other attempts were made to apply the TMR attribute to different modules 

and signals in the sequencer to try and obtain a result similar to the manual TMR method.  

In each case, simple combinational logic was ignored by the software synthesis.  There 

seems to be no method to force triplication of the combinational logic blocks. 

The Synopsis synthesis software does not provide any built-in simulation 

software.  To perform a fault-tolerance and operational comparison between the software 

TMR version generated here and the manual version, an extra step was required.  The 

generated design was exported in schematic form from the Synplify package.  This 

schematic was than manually imported as a new design into the Xilinx ISE package and 

from there the previously used ISim simulations were performed. 

The more complex design generated by this synthesis software raised an 

additional challenge for testing.  Specifically, a decision had to be made as to where to 

insert the test signals.  Using the sequencer memory module as an example, the TMR 

software triplicated the output registers and added a voter circuit, as shown in Figure 54.   
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If an SEU occurs in the register itself, this TMR method corrects the problem. If the SEU 

occurs in the voter output module or the input to the memory module, then the error 

propagates throughout the design. 

 
Figure 54.  Detailed view of software TMR on the memory and next state logic interface. 

To verify this issue and observe its effects on the performance of the software 

TMR sequencer design, the fault modules were added in different locations for the 

memory and timer modules and are discussed in their respective sections.  The software 

TMR’s version of the state registers and voters was very similar to the manual TMR 

version, and it was possible to insert the state output faults in the same locations to 

achieve the most accurate comparison.  A first simulation was performed with no inserted 

faults, and the output is identical to the single and manual TMR cases, as seen in Figure 

55.  
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Figure 55.  Software TMR simulation with no inserted faults. 

3. Timeout Fault 

For the timeout fault case, the fault was inserted into one of the triplicated timeout 

registers from a single timeout module as seen in Figure 56.  This TMR configuration as 

delivered by the Synopsys software would probably handle any errors generated in the 

timer modules.  A simulation was performed with several times and durations of error 

inserted, and in each case the circuit corrected the error.  A final comparison run was 

performed using the same time from the manual TMR case for comparison, as shown in 

Figure 57.  

 
Figure 56.  Software TMR timer fault insertion schematic showing fault location. 
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Figure 57.  Software TMR sequencer operation with a fault in the timeout signal. 

4. P-POD Select Fault 

For the P-POD select fault, the error was inserted into the design between the next 

state logic and the memory module.  As the software TMR solution only applied the 

additional registers and voting logic to the module output, no fault protection was 

provided.  As shown in Figure 58, the error propagated through all three output modules.  

Since all three modules produced the same error, the voter was not able to resolve the 

issue.  Comparing this result to previous cases, we see that the output is the same as the 

single, unprotected module seen in Figure 39.  

 
Figure 58.  Software TMR sequencer operation with a fault in the P-POD select signal. 

5. State Out Errors 

The software TMR design and manual TMR designs are nearly identical in their 

output with regard to how the state registers and state information is handled.  A number 

of tests for faults on the MSB and LSB were performed at various insertion times and 

durations.  These faults had no impact on the operation of the overall sequencer, as 

expected in this TMR configuration.  A combined case, with errors in both the MSB and 
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LSB is shown in Figure 59.  A fault in the MSB occurs first at the 260 ns point, and a 

fault on the LSB occurs at 460 ns.  Neither of these errors affects the output of the 

sequencer. 

 
Figure 59.  Software TMR sequencer operation with faults in the state output MSB and 

LSB. 

6. Voter Module Fault 

The potential problem caused by an SEU in one of the voter modules is 

significantly increased with the software TMR solution.  This design contains three times 

the number of voter modules as the manual TMR version, and faults are more likely due 

to the increased physical area used by voters on the FPGA.  Several experiments with 

voter faults were explored. 

a. Timer Voter Faults 

Faults in the timer module voters had results very similar to timer faults in 

the non-TMR sequencer.  This is to be expected, as the software TMR applied only 

protection to the timeout signal. 

b. Memory Voter Faults 

The software TMR solution protects the output registers from the memory 

module, specifically the three bit bus that designates the “current” P-POD and the four bit 

bus containing the required launch delay.  Voter errors in these modules created 

significant problems with operation that were not evaluated in the non-TMR version.  

Faults inserted here can cause the incorrect P-POD to launch or improper launch delays. 
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c. State Voter Faults 

A fault in the first layer of state voters has no impact on the overall 

operation of the software TMR version of the sequencer.  Comparable to the manual 

TMR version, any error in the voter is absorbed by the output voter.  Unlike the manual 

TMR version, the software version incorporates a single output voter.  Since there is only 

one next state-logic module, the software TMR version must have a final voter before the 

signal is looped back to the input of the next-state module.  In the manual TMR version, 

this final state voter was for simulation only and would be replaced with the hardware 

voter in an operational design.  This introduces an additional point of failure for the 

software TMR version, as seen in Figure 60. Here a voter fault introduces a state error 

that cannot be corrected by the hardware voter output as in the manual TMR case. 

 
Figure 60.  Software TMR sequencer operation with a fault in the second layer state voter 

circuit. 

E. CHAPTER SUMMARY 

In this chapter the design for the basic sequencer was moved from the concepts of 

Chapter III into a version that could be simulated in software.  A brief review of available 

software packages was performed, and a development environment was selected for 

future use.  The potential effects of SEUs on the FPGA were evaluated and translated into 

the expected types of digital logic errors that can occur.  A method was then developed to 

simulate those errors in software, and the locations for each error were established for 

consistent testing.   
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To establish a baseline for comparison, a series of faults were simulated on a 

basic version of the sequencer with no fault tolerant features.  The effects on the 

operation were evaluated for each fault condition.  These tests were then repeated on a 

version of the sequencer with TMR protection applied by hand and again on a version 

with TMR protection applied via a software tool.  Comparisons were made between each 

version and the capability of the TMR protection to provide fault-free operation for the 

given error conditions. 

Upon review of the results in this chapter, there is no doubt that TMR can provide 

considerable protection from SEUs.  The manual TMR case was most effective in these 

tests, as it was able to deliver fault-free operation in every case.  The software TMR 

version afforded some protection but was not able to avoid error in all cases.  The 

unprotected logic and the input signals to the protected sections were vulnerable to errors, 

as demonstrated in the output errors that occurred from errors in the P-POD select lines.  

In addition, the design produced by the software introduced some additional sources of 

error, which may further degrade the performance.   

For this level of design complexity, manual TMR is not time consuming and 

provides superior results to software TMR.  As complexity increases, the time required to 

apply manual TMR also increases, and the potential for human errors increases.  While 

the engineering man-hours required to complete a design are important, the following 

chapter discusses the other hardware factors that must also be considered. 
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V. HARDWARE IMPLEMENTATION AND ANALYSIS 

A. FPGA IMPLEMENTATION 

Translating the design developed in previous chapters onto a physical FPGA is a 

complex process.  A typical FPGA design flow starts with design entry, then moves to 

synthesis, place and route, timing analysis/simulation, and finally device programming.  

A brief overview of these steps is covered here to review particular issues for the 

sequencer design and fault-tolerance. 

1. Design Entry 

Design entry is the initial step of FPGA development and was completed and 

tested in the previous chapter.  The end result of this step is either a Verilog or VHDL 

design or, in this case, a combined schematic and Verilog design.  The schematics used 

here are purely for ease of understanding and visualization for the designer.  The 

development software converts the schematics to an equivalent Verilog file in the last 

stage of this step. 

2. Synthesis 

Synthesis is the process of converting the high-level circuit description provided 

by the HDL into a low-level description using gates and on-chip components, commonly 

called register-transfer level (RTL).  High performance FPGAs generally do not use basic 

gates on chip but instead use a device called a look-up table (LUT).  These are essentially 

small memory devices that are programmed with the equivalent logic table.  A LUT 

generally has a lower gate delay and takes less FPGA resources than the equivalent gate 

structure, making them both faster and more space-efficient.  An example for the voter 

circuit is shown in Figure 61.  



 84 

 
Figure 61.  Conversion of a majority voter logic gate design into a LUT implementation 

using a three-input LUT. 

In order to synthesize a design for a given FPGA, the software must first know the 

exact internal structure of the FPGA to be used.  For example, the design above uses a 

three-input LUT, but the larger Actel and Xilinx all use four or six input LUTs.  The 

knowledge of the internal routing structure, clocks, registers and all other on-chip 

components is critical to producing a working design.  This data is generally built-in to 

the development environment, and this is one reason the major FPGA manufacturers also 

produce their own development software. 

A significant level of design optimization also occurs during this step, and this 

presents a potential problem for the fault-tolerant designs.  FPGA designers are generally 

concerned with two major optimizations, speed and areas.  The development software 

automatically reviews a given design, rearranges components and removes redundant or 

unused gates or signals.  An example of the optimization of the timer module, detailing 

the final register transfer level (RTL) schematic, is shown in Figure 62. This optimization 

is critical if the designer is trying to meet certain timing goals or if the design is large and 

may not fit on the FPGA otherwise.  Unfortunately, this optimization is detrimental to 

TMR designs, as it detects the redundant components and trims them from the final 

design.  Additional command switches and software options must be set to ensure this 

does not occur when developing a TMR logic design. 
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Figure 62.  RTL schematic produced following synthesis of a timer module in the 

sequencer design. 

3. Place and Route 

In the place and route step, the design produced from synthesis is mapped into the 

physical logic blocks and I/O pads of the target FPGA.  A set of selected user constraints 

is loaded first.  This maps the I/O pins on the FPGA itself to the I/O markers on the logic 

design.  Any internal clocks, memory devices, or other on-chip components are assigned 

to the design in this file.  To complete the process, the optimized design is mapped onto 

the physical LUTs, registers, and other components of the target FPGA.  The software 

generally performs additional optimizations during this step, placing components to 

improve performance by keeping signal lines as short as possible or placing them an 

exact distance apart from each other to minimize clock skew. 

As seen in Figure 63, the final maps are very complex and difficult for humans to 

decipher.  In this figure, each of the tiny grey blocks are unused logic blocks.  The dark 

blue blocks are logic blocks that are being used, and the light blue lines are active signal 

connections.  The red line in this figure is the signal trace for one bit of the P-POD 

advance signal, showing its connection between four other logic blocks. 
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Figure 63.  View of a Xilinx FPGA place and route map for the sequencer design. 

B. FPGA METRICS 

To compare the three sequencer designs developed here, they were run through 

both the synthesis and place and route steps.  As before, the Xilinx ISE 14.6 was used in 

both steps.  For consistency and future use on the available development hardware, the 

designs were targeted for the Xilinx Virtex-5 device, specifically, the XC5VLX50T.  

Several non-standard options were set in the synthesis options to prevent trimming of the 

redundant logic by the software as follows [2]: 

• Equivalent Register Removal set to FALSE.  This prevents the trimming 
of duplicate state registers. 

• Resource Sharing set to FALSE.  This prevents the synthesis software 
from attempting to share on-chip resources, such as adders or MUXs 
between modules, which would eliminate desired redundancy.   

1. Synthesis Results 

Following full synthesis of each of the three designs, we reviewed the synthesis report 

and the low-level summary results were recorded, as can be seen in Table 5.   
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Table 5.   FPGA Resources used for three different sequencer designs 

 
Sequencer Design Type 

Resource Single  
Manual 

TMR 
Software 

TMR 
Inverters 6 6 6 
Two Input LUT 7 21 23 
Three Input LUT 8 27 20 
Four Input LUT 14 26 13 
Five Input LUT 6 26 5 
Six Input LUT 21 44 19 
MUX 1 10 1 
Flip-Flops / Latches 14 42 28 

 

The results here are consistent with what was observed from the block diagrams.  

Due to the triplication of entire modules, the manual TMR version consumes three to four 

times the resources of the single sequencer.  The software TMR version falls between the 

two in terms of resources but is closer to the manual TMR version.  As would be 

expected by the nature of TMR, adding this fault protection results in an overall design 

that is at least three times larger than the original. 

In each case explored here, the total use of the FPGA was reported as less than 

one percent of the total available resources.  For example, the FPGA selected has 28,800 

LUTs available, and the manual TMR design only used 114 LUTs.  The specific FPGA 

chosen was selected due to the availability of the development board for testing and is 

significantly larger than required for a flight hardware device.  An example map showing 

the vast quantities of unused space on this FPGA is seen in Figure 64.  The logic used by 

the manual TMR sequencer is represented by the miniscule light blue dots in the top third 

of the map.  Using this FPGA does have the advantage of being pin-compatible with the 

rad-hard versions of the same FPGA, which reduces the testing costs for future use.  In 

addition, the extra space provides significant room for any design changes or future 

improvements. 
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Figure 64.  Manual TMR sequencer final place and route showing <1% resource usage. 

2. Fault Tolerant Place and Route 

Using an FGPA that is significantly larger than the design requires also offers 

another fault-tolerant advantage that has not been discussed.  As the feature size and 

operating voltages of the FPGAs decreases, they become more susceptible to MBUs [51].  

The software TMR design realized here cannot provide protection from MBUs in most 

cases.  The manual TMR can provide protection for MBUs if they occur in the same 

module or different bit positions in multiple modules.  The most robust TMR design 
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cannot protect against an MBU that causes a bit flip in two adjacent sequencer modules 

or voter circuits.  Pre-planning the place and route on a design can be used in this case to 

spread the modules out over a wide area on the FGPA. 

Using the development software, in this case, the Xilinx FPGA Editor or the 

PlanAhead12 software, we can obtain a more distributed design.  An example of a rough 

block diagram for a place and route arrangement is seen in Figure 65.   Since radiation 

events that cause MBUs are localized to the area the incoming energy impacts the device, 

physically separating the modules on-chip ensures that if an MBU occurs, only a single 

module of the TMR scheme is impacted and the overall output remains unaffected. 

 
Figure 65.  TMR sequencer modules distributed widely across the entire FPGA package. 

This concept poses two drawbacks, both in the form of time.  For a more complex 

design, manually re-distributing the components of the design across the FPGA is time 

consuming for the engineer.  At the time of this writing there is no automatic software 

solution to evenly distribute logic across a large FPGA.  The other major concern is 

                                                 
12 PlanAhead ® is a registered trademark of Xilinx, Inc. 
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timing within the design.  As each block is moved, the time for signals to move between 

gates is changed.  In a normal arrangement, the development software places the blocks 

to minimize the clock skew or at least keep it within set parameters.  If this routing is 

done manually, the clock skew may become fairly large and introduce timing errors into 

the design.  The increase in distance between modules also increases the total FF output 

to input delay, increasing the allowable clock period and lowering the maximum 

operating frequency.  For the sequencer presented here, the required clock speeds are 

very low, and this additional routing time does not impact the operation.  In a more 

complex design, this could rapidly become a limiting factor. 

C. TIMING ANALYSIS 

Using the same settings as the previous evaluation, we generated a timing report 

for each design.  The compiled key portions of the report are shown in Table 6.  For the 

sequencer design presented here, timing is not a major factor in the design.  The 

sequencer uses the clock pulses in the internal timing, so the final clock frequency is 

determined more by the required delay between launches and not the specifics of the 

FPGA technology. 

Table 6.   Timing comparison for fault tolerant sequencer designs. 

 
Sequencer Design Type 

  Single  
Manual 

TMR 
Software 

TMR 
Minimum Period (ns) 3.132 4.654 4.952 
Maximum Frequency (Mhz) 319.25 214.87 201.94 
Maximum Combinational Path 
Delay (ns) 5.464 5.87 8.626 

 

The current design allows four bits for time delay, so a minimum delay of one 

clock period and a maximum delay of 15 times the clock period is possible.  Using this 

information the following table was generated to determine a reasonable clock frequency.  

In this case, even the slowest calculated frequency does not meet the design requirement 

for delay between launches, which requires a one second to one hour delay. 
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Table 7.   Available P-POD delay times with various operating frequencies 

 
Clock Frequency 

  1 kHz 10 kHz 100 kHz 1 MHz 100 MHz 
Minimum Delay (ms) 1 0.1 0.01 0.001 0.0001 
Maximum Delay (ms) 15 1.5 0.15 0.015 0.0015 

 

There are two possible solutions to alter the design to meet the initial 

requirements.  One option is to operate at low clock speed and insert a clock divider into 

the timer module.  This does not significantly affect the complexity of the design and 

provides a reasonable level of control over launch delay.  Another option is to alter the 

designs to increase the bit-width of the timer.  This change increases the size of the timer 

module, but it provides a very fine-grain control over the launch delay.  Regardless of the 

method used, the timing data for the existing designs is more than sufficient to 

demonstrate operation at clock speeds well in excess of what will be used by an 

operational design. 

D. TEST HARDWARE IMPLEMENTATION 

1. Board Selection 

The final step in testing the sequencer was loading the design onto a hardware 

prototyping board for testing.  The key features desired were: 

• An FPGA that is either already rad-tolerant or at least compatible to a rad-
tolerant version.  This ensures the design will be portable to a rad tolerant 
device for future use.  Development boards with actual radiation tolerant 
FPGAs are considerably more expensive and unnecessary for the level of 
testing being performed here.  

• Sufficient indications and input device onboard to allow testing without 
significant additional prototyping boards and components.  Specifically, 
the board needed a minimum of eight switch inputs for the door switch 
inputs, two or three momentary-contact switches to act as clocks or error 
signals, and eight LEDs for indication of launch output signals. 

Three devices were considered, the NPS ProASIC3 Test Board [2], and two 

general prototyping and testing boards, one from Xilinx and one from Actel. 

The NPS ProASIC3 board, as the planned board for future testing with the SAD 

V3, was considered the ideal choice for testing, but it lacks a simple means of adding 
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additional input devices for design testing.  To use this board for verification, an 

additional prototyping board needs to be manufactured with the appropriate inputs, and 

additional testing and troubleshooting of this new, one-time use hardware is required. 

The second choice was the Microsemi ARM13 Cortex14 ProASIC15 3L M1A3PL-

DEV-KIT development kit, shown in Figure 66. Similar to the NPS ProASIC3 board, this 

evaluation board uses the Actel M1A3PL1000 FPGA.  This FPGA is compatible with the 

Radiation Tolerant (RT) ProASIC3 FGPA, which includes both a high level of radiation 

resistance, as well as built-in TMR features in the I/O banks, some FFs, and the clock 

network [52].  This development board includes eight dual-inline package (DIP) 

switches, eight LEDs and general I/OI connections that can be used to insert faults with 

only minor hardware changes. 

 
Figure 66.  Microsemi ARM Cortex-M1-Enabled ProASIC3L Development Kit. 

                                                 
13 ARM ® is a registered trademark of ARM Holdings 
14 Cortex is a trademark of ARM Holdings 
15 ProASIC is a registered trademark of Microsemi Corporation 
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The final kit considered was a Digilent Genesys16 development kit, which 

employed the Xilinx Virtex-5 LX50T FPGA.  Xilinx offers a radiation hardened version 

of this FPGA, the Virtex-5QV.  This board is much more complex but offers the widest 

array of onboard I/O devices.  Similar to the Microsemi board, a bank of eight LEDs and 

eight switches are offered [53].  This board also includes several momentary-contact 

pushbutton switches and allows for immediate use for testing with no hardware 

modifications necessary.  The Genesys development board can be seen in Figure 67.  

 
Figure 67.  Digilent Genesys development board with Xilinx Virtex-5 FPGA. 

The Digilent Genesys board was chosen for testing on this design.  The criteria 

used for selection hinged on two factors: one, the ability to use the board immediately, 

with no additional hardware testing required; and two, compatibility with the 

                                                 
16 Genesys is a trademark of Digilent, Inc. 
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development environment in use.  By using a Xilinx-based product, the designs can be 

quickly compiled and programed using the Xilinx ISE that has been used for the majority 

of the prior design work.  While it is possible to port the Verilog design to another 

environment and then program the Microsemi devices, this adds extra steps to each 

iteration.  Using a Xilinx device also allows more accurate comparisons to the data 

collected previously in this thesis. 

2. Design Modification for Hardware Testing 

To adapt the sequencer to the physical hardware for testing, the first task was to 

map the I/O devices on the hardware to the I/O pads in the design files.  The switches 

were mapped to the P-POD door status input switches.  The launch signals that activate 

the NEAs were mapped to the on-board LEDs.  The Xilinx Virtex-5 FPGA offers a wide 

array of internal clocking devices and multiple clock domains.  This design is very 

flexible and powerful but overly complex for this small sequencer.  The Genesys board 

offers a simple external 100 MHz clock pin, which is ideal for this implementation.   A 

32-bit counter was added to the top level of the design to act as a selectable frequency 

divider.  For testing, the LED that is normally assigned to the launch signal for P-POD #8 

was instead assigned to the clock to provide a “heartbeat” to ensure the design was 

operating.  This allows a very precise method to step through the operation and allows 

time to insert various faults manually and observe the results.  The on-board RESET 

button was assigned to the CLR signal to reset the design back to the starting condition at 

any time.  The various error signals were mapped to the remaining momentary contact 

pushbuttons. 

3. Hardware Testing 

Basic operational testing was performed with the single sequencer design.  Initial 

adjustments were made with the frequency divider to achieve a clock rate of about 1.5 Hz 

using bit 26 of the divider.  Once loaded, the design properly stepped through the 

programmed sequence.  An example, showing the P-POD launch signal at LD4  
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(representing P-POD #5) and the clock signal on LD7 can be seen in Figure 68. Faults 

inserted with the mapped pushbuttons demonstrated faults in the sequence similar to 

those shown in simulation.   

 
Figure 68.  A demonstration of the sequencer operating on the Genesys test board. 

Final testing with the manual TMR sequencer demonstrated results similar to 

those shown by the simulations in the previous chapter.  Insertion of faults via the push 

buttons had no impact on the programmed sequence, indicating the fault tolerant design 

was working properly. 

With the available hardware test devices, it is difficult to perform complete 

hardware level testing.  A more complete test board that included connections for an 

external digital logic analyzer is necessary.  Use of one of these devices allows capture of 

the actual logic waveforms inside the design while it is running in the FPGA and 

provides a direct comparison for the design simulations performed in the previous 

chapter.  Without those test connections and the logic analyzer equipment, the possible 

hardware testing is somewhat restricted. 
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E. CHAPTER SUMMARY 

Implementation of the fault tolerant sequencer in a physical hardware board was 

discussed in this chapter.  A brief discussion on the complex process of moving from a 

Verilog or schematic design to an actual FPGA was discussed.  Each step of this process, 

from synthesis to generating the final programing file for the FPGA, has dozens of 

internal steps.  Each of these stages has many configuration options in software that 

control the optimization, speed, compatibility and format of the final product.  Careful 

control of these settings is essential to avoid an “optimization” step removing all of the 

redundancy offered by these fault tolerant techniques.   

A comparison of the key FPGA metrics was presented next, providing an 

overview of the actual hardware that is required by the sequencer.  An example of the 

major drawback of fault tolerant designs, the cost in hardware resources, was provided in 

this section.  Both fault tolerant designs consumed about three times the number of gates 

and FFs as the non-protected version.  Any fault tolerant logic designer must keep this in 

mind, especially when using premade logic cores such as large processors or purpose-

built cores.  Triplicating these designs can quickly cause the engineer to run out of system 

resources.   

Finally, a comparison was made of the various hardware boards available for 

testing at the time of writing.  Given the various choices available, the Digilent Genesys 

board was the appropriate decision.  This board provided all the necessary testing features 

to validate the operation of the sequencer and TMR features on physical hardware.  This 

testing was performed and the design validated.  This testing method demonstrated the 

overall operation of the sequencer but is somewhat limited since internal signals and 

operation cannot be verified once in hardware without adding a significant amount of 

additional signals and I/O devices to the testing hardware.  The performance of the 

sequencer here meets the operational and design requirements specified in earlier 

chapters.  A summary and recommendations for further development are found in the 

following chapter.  
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VI. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 
WORK 

The difficulties of operating complex electronic devices in a radiation 

environment like that encountered by spacecraft on orbit were discussed in this thesis.  

Radiation has some impact on all electronics, but the focus here was on FPGA 

technology.  The design of a launch control sequencer suitable for use on the NPSCuL 

was detailed.  A fault tolerant technique, TMR, was discussed and applied to the design 

using both manual methods and automatic software tools.  The fault tolerances of the 

three final designs were compared.  Implementation of the design in physical hardware 

was discussed and testing was performed on a development kit that verified the 

simulation results that showed the effectiveness of the manual TMR design in correcting 

SETs or SEUs. 

A. CONCLUSIONS 

New developments in FPGA manufacturing technology has produced radiation 

tolerant devices with significant resistance to upsets.  Despite the high cost and complex 

features of these specialized FPGAs, these errors still occur.  In order to combat these 

effects, various fault tolerant logic design methods were discussed.  TMR, which has 

been proven to be a reliable fault tolerance method, was selected as the appropriate 

method for this design.  TMR lends itself very well to a modular design, allowing its 

application to either small or large blocks of logic.  While the design presented here is 

fairly small, the techniques scale with larger designs. 

For this level of design, the manual TMR method is clearly superior in its ability 

to tolerate errors over the software and single TMR design.  The very small increase in 

FPGA resources for the manual method is insignificant compared to the level of 

protection provided by replicating all of the major modules.  The major FGPA 

manufactures are constantly improving their designs with more and more gates, and this 

serves to drive down the cost-per-gate for a given FPGA.  The FPGAs considered for  
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similar applications should have more than sufficient overhead to support the most robust 

TMR design.  This practice will also provide room for the future, allowing extra gates for 

new features and upgrades. 

The sequencer developed here represents a specific application of the design 

techniques that should be employed for similar fault-tolerant projects.  Separating the 

design into functional modules not only makes the development process easier, but it 

makes future changes or upgrades much easier.  This approach also provides more 

opportunities for insertion of fault-tolerant features. 

B. FOLLOW-ON RESEARCH 

1. Radiation Testing 

There are numerous areas that will require additional study and development 

before this sequencer design can be used in an actual mission.  Additional testing and 

integration must be performed before the sequencer can be adapted to the existing 

NPSCuL hardware.  In particular, the TMR version of the design requires actual radiation 

testing.  While the most common or likely faults were simulated in this thesis, it cannot 

compare to testing in a real radiation environment.  This task will require creation of a 

testing rig to allow communication while the FPGA is being irradiated and a method to 

detect and record the errors encountered.  Retooling the existing design to support this 

very detailed monitoring will be a challenging task. 

2. Place and Route Effects on MBU 

As discussed in Chapter V, the effects of controlling the placement of logic blocks 

when they are being mapped onto an FPGA is an interesting direction of study.  A 

carefully mapped placement of these blocks in a TMR type design is theoretically more 

resistant to radiation effects while not significantly affecting the performance of the 

design.  This concept may be expanded beyond the humble sequencer design in the 

future. 
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3. Additional FPGA Features/Uses 

One of the driving factors for using an FPGA in the sequencer design for the 

NPSCuL is the flexibility of the design.  Not only can updates and improvements be 

performed quickly and without additional hardware testing, but new features can be 

added.  Exploring some of the new features and capabilities possible with the NPSCuL 

after the CubeSats have been launched is an interesting area of study.  Reusing the 

sequencer hardware once its primary mission is complete would be an excellent use of 

existing resources.  The improved SADv3 design added several new memory options that 

are currently unused, and integration of these and other features presents an interesting 

opportunity for study. 

4. Software Comparison 

In this thesis, only one primary software package was used to perform the TMR 

functions.  The three major FGPA manufacturers each offer TMR and fault-tolerance 

design features in their respective software packages.  Due to ITAR restrictions, 

obtaining these software packages is difficult.  A comparison of the features and 

performance of the various tools for this application would be useful for future designs. 
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APPENDIX A. DESIGN SCHEMATICS 

The sequencer design used a mix of Verilog code and Xilinx ISE schematic files.  

The schematic files for each of the three designs are contained in this appendix. 

A. SINGLE SEQUENCER TOP LEVEL SCHEMATIC 
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B. SINGLE SEQUENCER WITH FAULT MODULES TOP LEVEL 
SCHEMATIC 
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C. MANUAL TMR SEQUENCER WITH INTERNAL FAULT MODULES 
TOP LEVEL SCHEMATIC 

 

1. Manual TMR Basic Sequencer Module 
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2. Manual TMR Basic Sequencer Module with Fault Modules 
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D. SOFTWARE TMR SEQUENCER WITH FAULT MODULES 
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APPENDIX B. VERILOG CODE 

A. STATE REGISTERS 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    10:38:58 09/02/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    state_registers  
// Project Name:   Sequencer 
// Target Devices:  Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Four bit state registers with preset/clear 
// 
// Dependencies: None 
// 
// Revision: 2 
// Revision 0.01 - File Created 
// Additional Comments: None 
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module state_registers( 
    input [3:0] state_in, 
    output reg [3:0] state_out, 
    input CLK, 
    input CLR 
    ); 
 
    always @(posedge CLK or posedge CLR) begin 
         
        if (CLR) state_out = 8;  // clear sets START state 
             
            else state_out = state_in; 
         
        end 
 
endmodule 

B. TIMER MODULE 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    11:09:27 09/02/2013  
// Design Name:    NPSCuL Sequencer 
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// Module Name:    timer  
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Count-up timer with async clear/start, and timeout 
signal 
// 
// Dependencies:  
// 
// Revision: 4 
// Revision 0.01 - File Created 
// Additional Comments: None 
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module timer( 
    input [3:0] time_value, 
    input start, 
    input CLK, 
     input CLR, 
      
     output reg timeout = 0 
    ); 
 
    reg [3:0] counter = 0; 
    reg [3:0] init_counter = 0; 
     
    always @(posedge start or posedge CLR) begin 
        counter = 0; 
        if(CLR) init_counter = 0; 
            else if(start)  init_counter = time_value; 
                else    init_counter = 0; 
        end 
         
    always @(posedge CLK) begin 
         
        if(timeout) timeout <= 0; 
         
        else if(counter == init_counter) 
                timeout <= 1; 
                 
                else begin 
                    counter <= counter + 1; 
                    timeout <= 0; 
                    end 
                                     
        end 
 
endmodule 

 

 



 109 

C. NEXT STATE MODULE 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    12:41:12 08/24/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    Sequencer_Next_State 
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Next-state logic for sequencer 
// 
// Dependencies: None 
// 
// Revision: 8 
// Revision 0.01 - File Created 
// Additional Comments:  
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module sequencer_next_state( 
 
    // Door Status Switch Inputs from door hardware 
     // Assume: 0 = Door SHUT, 1 = Door OPEN 
     input [7:0] door_status, 
     input [2:0] current_ppod, // PPod being launched 
     input [3:0] current_ppod_delay, // delay for current PPod  
     input timeout,  // input from timer 
      
     input CLR, 
      
     input [3:0] current_state,  // input from state register 
     output reg [3:0] next_state, // output to state register 
      
     output reg [2:0] get_next_ppod = 0, // get next ppod number and 
delay from storage 
      
     output reg launch_status, // store launch status in storage 
      
     output reg [3:0] time_value, // outputs for timer 
     output reg time_start 
     ); 
 
    // Define States 
    reg ppod_advance = 0; 
     
    parameter INIT = 8; 
    parameter WAIT = 9; 
    parameter ADVANCE = 10; 
    parameter LAUNCH_FAIL = 11; 
    parameter LAUNCH_SUCCESS = 12; 
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    parameter DONE = 13; 
    parameter LAUNCH1 = 0; 
    parameter LAUNCH2 = 1; 
    parameter LAUNCH3 = 2; 
    parameter LAUNCH4 = 3; 
    parameter LAUNCH5 = 4; 
    parameter LAUNCH6 = 5; 
    parameter LAUNCH7 = 6; 
    parameter LAUNCH8 = 7; 
    parameter START = 14; 
 
    parameter ppod_door_delay = 5; // default wait for door to open 
 
    always @ (*) begin 
        if(CLR) begin 
            ppod_advance <= 0; 
            time_start <= 0; 
            next_state <= START; 
            get_next_ppod <= 0; 
             
            end 
         
         
        case (curresnt_state) 
             
            default: begin 
                next_state <= START; 
                end 
             
            INIT: begin  // additional wait state to allow timeout to 
clear 
                time_start <= 0; 
                next_state <= START; 
                end 
             
            START: begin 
                    time_value <= current_ppod_delay; // start launch 
timer 
                    time_start <= 1; 
                    next_state <= WAIT; 
                end 
             
            WAIT: begin 
                             
                if(timeout) begin 
                    time_value <= ppod_door_delay; // set timer for 
ppod door timeout 
                    time_start <= 0; 
                    next_state <= current_ppod; // jump to launch state 
based on PPOD # 
                    end 
                     
                    else 
                        next_state <= WAIT; 
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                end 
                 
            ADVANCE: begin 
                    time_start <= 0; 
                    next_state <= START; 
                    if(ppod_advance) begin  // advance sequence 
                        if(get_next_ppod == 7) next_state <= DONE; 
                            else begin 
                            launch_status <= 0; 
                            get_next_ppod <= get_next_ppod + 1; 
                            ppod_advance <= 0; 
                            end 
                        end                      
                end 
             
            LAUNCH_FAIL: begin 
                launch_status <= 0; 
                ppod_advance <= 1; 
                next_state <= ADVANCE; 
                end 
             
            LAUNCH_SUCCESS: begin 
                launch_status <= 1; 
                ppod_advance <= 1; 
                next_state <= ADVANCE; 
                end 
     
            DONE: begin 
                next_state <= DONE; 
                end 
             
            LAUNCH1: begin 
                time_start <= 1; // start door timer 
                if(door_status[0]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH1; 
                                 
                end 
                 
            LAUNCH2: begin 
                time_start <= 1; // start door timer 
                if(door_status[1]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH2; 
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                end 
            LAUNCH3: begin 
                time_start <= 1; // start door timer 
                if(door_status[2]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH3; 
                                 
                end 
            LAUNCH4: begin 
                time_start <= 1; // start door timer 
                if(door_status[3]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH4; 
                                 
                end 
            LAUNCH5: begin 
                time_start <= 1; // start door timer 
                if(door_status[4]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH5; 
                                 
                end 
            LAUNCH6: begin 
                time_start <= 1; // start door timer 
                if(door_status[5]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH6; 
                                 
                end 
            LAUNCH7: begin 
                time_start <= 1; // start door timer 
                if(door_status[6]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
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                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH7; 
                                 
                end 
            LAUNCH8: begin 
                time_start <= 1; // start door timer 
                if(door_status[7]) 
                    next_state <= LAUNCH_SUCCESS; 
                     
                    else if(timeout) 
                        next_state <= LAUNCH_FAIL; 
                             
                            else  
                                next_state <= LAUNCH8; 
                                 
                end              
 
        endcase 
     
    end 
 
endmodule 

D. SEQUENCE MEMORY MODULE 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    10:04:10 09/02/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    Sequence_Memory  
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Memory module sets launch sequence and delay times 
// 
// Dependencies: None 
// 
// Revision: 2 
// Revision 0.01 - File Created 
// Additional Comments: None 
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module sequence_memory( 
    input [2:0] select_ppod, 
     input launch_status_in, 
    output reg [2:0] ppod_number_out, 
    output reg [3:0] ppod_delay_out 
    ); 
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    reg [7:0] launch_status = 0; 
     
    parameter LAUNCH_SEQ_1 = 0;  // set sequence here 
    parameter LAUNCH_SEQ_2 = 1; 
    parameter LAUNCH_SEQ_3 = 2; 
    parameter LAUNCH_SEQ_4 = 3; 
    parameter LAUNCH_SEQ_5 = 4; 
    parameter LAUNCH_SEQ_6 = 5; 
    parameter LAUNCH_SEQ_7 = 6; 
    parameter LAUNCH_SEQ_8 = 7; 
     
    parameter LAUNCH_DEL_1 = 5;  // set time delay here 
    parameter LAUNCH_DEL_2 = 10; 
    parameter LAUNCH_DEL_3 = 15; 
    parameter LAUNCH_DEL_4 = 5; 
    parameter LAUNCH_DEL_5 = 10; 
    parameter LAUNCH_DEL_6 = 15; 
    parameter LAUNCH_DEL_7 = 5; 
    parameter LAUNCH_DEL_8 = 10; 
     
         
    always @ (*) begin 
         
        launch_status[ppod_number_out] <= launch_status_in; 
         
        case (select_ppod) 
         
            0: begin 
                    ppod_number_out = LAUNCH_SEQ_1; 
                    ppod_delay_out = LAUNCH_DEL_1; 
                end 
                 
            1: begin 
                    ppod_number_out = LAUNCH_SEQ_2; 
                    ppod_delay_out = LAUNCH_DEL_2; 
                end 
                 
            2: begin 
                    ppod_number_out = LAUNCH_SEQ_3; 
                    ppod_delay_out = LAUNCH_DEL_3; 
                end 
                 
            3: begin 
                    ppod_number_out = LAUNCH_SEQ_4; 
                    ppod_delay_out = LAUNCH_DEL_4; 
                end 
                             
            4: begin 
                    ppod_number_out = LAUNCH_SEQ_5; 
                    ppod_delay_out = LAUNCH_DEL_5; 
                end 
                 
            5: begin 
                    ppod_number_out = LAUNCH_SEQ_6; 



 115 

                    ppod_delay_out = LAUNCH_DEL_6; 
                end 
                 
            6: begin 
                    ppod_number_out = LAUNCH_SEQ_7; 
                    ppod_delay_out = LAUNCH_DEL_7; 
                end 
                 
            7: begin 
                    ppod_number_out = LAUNCH_SEQ_8; 
                    ppod_delay_out = LAUNCH_DEL_8; 
                end 
                 
        endcase 
         
    end 
         
endmodule 

E. LAUNCH DECODER 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    14:26:47 09/08/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    launch_decoder  
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Three-bit decoder 
// 
// Dependencies: None 
// 
// Revision: 1 
// Revision 0.01 - File Created 
// Additional Comments:  
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module launch_decoder( 
    input [3:0] dec_in, 
    output launch_1, 
     output launch_2, 
     output launch_3, 
     output launch_4, 
     output launch_5, 
     output launch_6, 
     output launch_7, 
     output launch_8      
    ); 
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    and(launch_1,~dec_in[3],~dec_in[2],~dec_in[1],~dec_in[0]); 
    and(launch_2,~dec_in[3],~dec_in[2],~dec_in[1],dec_in[0]); 
    and(launch_3,~dec_in[3],~dec_in[2],dec_in[1],~dec_in[0]); 
    and(launch_4,~dec_in[3],~dec_in[2],dec_in[1],dec_in[0]); 
    and(launch_5,~dec_in[3],dec_in[2],~dec_in[1],~dec_in[0]); 
    and(launch_6,~dec_in[3],dec_in[2],~dec_in[1],dec_in[0]); 
    and(launch_7,~dec_in[3],dec_in[2],dec_in[1],~dec_in[0]); 
    and(launch_8,~dec_in[3],dec_in[2],dec_in[1],dec_in[0]); 
         
endmodule 

F. ONE-BIT VOTER MODULE 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    13:43:50 09/08/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    voter_one_bit  
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description: One bit majority voter 
// 
// Dependencies: None 
// 
// Revision: 1 
// Revision 0.01 - File Created 
// Additional Comments:  
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module voter_one_bit( 
    input a, 
    input b, 
    input c, 
    output vote_out 
    ); 
 
    wire a_1; 
    wire b_1; 
    wire c_1; 
     
    and(a_1, a, b); 
    and(b_1, a, c); 
    and(c_1, b, c); 
     
    or(vote_out, a_1, b_1, c_1); 
     
     
 
endmodule 
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G. STATE VOTER MODULE 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    13:40:09 09/08/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    state_voter   
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Four bit majority voter 
// 
// Dependencies: voter_one_bit 
// 
// Revision: 1 
// Revision 0.01 - File Created 
// Additional Comments: None 
// 
///////////////////////////////////////////////////////////////////////
/////////// 
module state_voter( 
    input [3:0] a, 
    input [3:0] b, 
    input [3:0] c, 
    output [3:0] vote_out 
    ); 
    voter_one_bit bit0 ( 
        .a(a[0]), 
        .b(b[0]), 
        .c(c[0]), 
        .vote_out(vote_out[0]) 
        ); 
    voter_one_bit bit1 ( 
        .a(a[1]), 
        .b(b[1]), 
        .c(c[1]), 
        .vote_out(vote_out[1]) 
        ); 
    voter_one_bit bit2 ( 
        .a(a[2]), 
        .b(b[2]), 
        .c(c[2]), 
        .vote_out(vote_out[2]) 
        ); 
    voter_one_bit bit3 ( 
        .a(a[3]), 
        .b(b[3]), 
        .c(c[3]), 
        .vote_out(vote_out[3]) 
        );       
endmodule 
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H. STATE VOTER WITH FAULT INSERTION 

`timescale 1ns / 1ps 
///////////////////////////////////////////////////////////////////////
/////////// 
// Company: Naval Postgraduate School 
// Engineer: LCDR Jason Brandt 
//  
// Create Date:    13:23:09 10/08/2013  
// Design Name:    NPSCuL Sequencer 
// Module Name:    state_voter_with_fault   
// Project Name:   Sequencer 
// Target Devices: Xilinx Virtex-5 
// Tool versions:  ISE 14.6 
// Description:  Four bit majority voter with insertable fault 
// 
// Dependencies: voter_one_bit 
// 
// Revision: 2 
// Revision 0.01 - File Created 
// Additional Comments: None 
// 
///////////////////////////////////////////////////////////////////////
/////////// 
 
module state_voter_with_fault( 
    input [3:0] a, 
    input [3:0] b, 
    input [3:0] c, 
     input voter_fault_enable, 
    output [3:0] vote_out 
    ); 
 
    wire bit0_internal; 
     
    voter_one_bit bit0 ( 
        .a(a[0]), 
        .b(b[0]), 
        .c(c[0]), 
        .vote_out(bit0_internal) 
        ); 
         
    voter_one_bit bit1 ( 
        .a(a[1]), 
        .b(b[1]), 
        .c(c[1]), 
        .vote_out(vote_out[1]) 
        ); 
    voter_one_bit bit2 ( 
        .a(a[2]), 
        .b(b[2]), 
        .c(c[2]), 
        .vote_out(vote_out[2]) 
        ); 
    voter_one_bit bit3 ( 
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        .a(a[3]), 
        .b(b[3]), 
        .c(c[3]), 
        .vote_out(vote_out[3]) 
        );       
 
    assign vote_out[0] = (voter_fault_enable) ? ~bit0_internal : 
bit0_internal; 
             
endmodule 

I. BEHAVIORAL TEST FIXTURE 

// Verilog test fixture created from schematic C:\Users\Jason 
Brandt\Dropbox\NPS\Thesis\Single_Sequencer_Test_Rev3\Sequencer_Basic.sc
h - Sat Nov 02 06:56:44 2013 
 
`timescale 1ms / 1ms 
 
module Sequencer_Basic_Sequencer_Basic_sch_tb(); 
 
// Inputs 
   reg CLR; 
   reg CLK; 
   reg [7:0] DOOR_STATUS; 
   reg [1:0] timeout_fault_sel; 
   reg [1:0] ppod_select_fault_sel; 
   reg [1:0] current_state_fault_sel_bit2; 
   reg [1:0] current_state_fault_sel_bit3; 
   reg [1:0] current_state_fault_sel_bit1; 
   reg [1:0] current_state_fault_sel_bit0; 
 
// Output 
   wire LAUNCH1; 
   wire LAUNCH2; 
   wire LAUNCH3; 
   wire LAUNCH4; 
   wire LAUNCH5; 
   wire LAUNCH6; 
   wire LAUNCH7; 
   wire LAUNCH8; 
 
// Bidirs 
 
// Instantiate the UUT 
   Sequencer_Basic UUT ( 
        .CLR(CLR),  
        .CLK(CLK),  
        .DOOR_STATUS(DOOR_STATUS),  
        .timeout_fault_sel(timeout_fault_sel),  
        .ppod_select_fault_sel(ppod_select_fault_sel),  
        .current_state_fault_sel_bit2(current_state_fault_sel_bit2),  
        .current_state_fault_sel_bit3(current_state_fault_sel_bit3),  
        .current_state_fault_sel_bit1(current_state_fault_sel_bit1),  
        .current_state_fault_sel_bit0(current_state_fault_sel_bit0),  
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        .LAUNCH1(LAUNCH1),  
        .LAUNCH2(LAUNCH2),  
        .LAUNCH3(LAUNCH3),  
        .LAUNCH4(LAUNCH4),  
        .LAUNCH5(LAUNCH5),  
        .LAUNCH6(LAUNCH6),  
        .LAUNCH7(LAUNCH7),  
        .LAUNCH8(LAUNCH8) 
   ); 
// Initialize Inputs 
 
       initial begin 
        CLR = 0; 
        CLK = 0; 
        DOOR_STATUS = 0; 
        timeout_fault_sel = 0; 
        ppod_select_fault_sel = 0; 
        current_state_fault_sel_bit3 = 0; 
        current_state_fault_sel_bit2 = 0; 
        current_state_fault_sel_bit1 = 0; 
        current_state_fault_sel_bit0 = 0; 
     
 
     
        #2 
        CLR = 1; 
        DOOR_STATUS = 255; 
        #4 
        CLR = 0; 
        // Uncomment relevant section to enable specific faults 
         
//    Timeout fault      
//      #200 
//      timeout_fault_sel = 1; 
//      #60 
//      timeout_fault_sel = 0; 
 
//      PPOD select fault 
//      #200 
//      ppod_select_fault_sel = 1; 
//      #60 
//      ppod_select_fault_sel = 0; 
 
//      State Output fault - MSB Case #1 
//      #200 
//      current_state_fault_sel_bit3 = 1; 
//      #60 
//      current_state_fault_sel_bit3 = 0; 
 
//      State Output fault - MSB Case #2 
//      #140 
//      current_state_fault_sel_bit3 = 1; 
//      #10 
//      current_state_fault_sel_bit3 = 0; 
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//      State Output fault - LSB Case #1 
//      #140 
//      current_state_fault_sel_bit0 = 1; 
//      #60 
//      current_state_fault_sel_bit0 = 0; 
 
        end 
     
    always begin 
    #1 
    CLK = ~CLK; 
    end 
     
endmodule 
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